The Cell Culture Core, designated as Core B, is a centralized facility that provides primary alveolar epithelial type 2 and type 1 cells from rats and mice to each of the four projects and to Core C. Additionally, the Core provides primary derived fibroblasts and maintains secondary alveolar epithelial cell lines for the PPG. Centralization of the cell culture facilities will ensure that a continuous supply of high quality alveolar epithelial cells is available to each of the four projects. The cell culture facility personnel has extensive experience in the isolation of primary alveolar type 2 and type 1 cells from rats and mice, as well as general cell culture techniques. The consolidation of the cell culture facilities will provide an economical means of isolating and culturing alveolar epithelial cells. This translates into reduced overall costs (i.e. personnel, reagents, animals) and more importantly maintains the precision and accuracy with which the cells are isolated and cultured

Public Health Relevance

Currently, there are no established cell lines that maintain the phenotypical characteristics of primary alveolar epithelial cells. Consequently, it is necessary to isolate the alveolar epithelial cells from the lungs of rodents so that these cells can be used by the Principal Investigator's of each of the four projects to directly test their hypotheses. Primary alveolar epithelial cells best reflect the in vivo environment of the alveolar epithelium

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL071643-10
Application #
8446403
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
10
Fiscal Year
2013
Total Cost
$338,079
Indirect Cost
$115,576
Name
Northwestern University at Chicago
Department
Type
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Wiese, Kristin M; Coates, Bria M; Ridge, Karen M (2017) The Role of Nucleotide-Binding Oligomerization Domain-Like Receptors in Pulmonary Infection. Am J Respir Cell Mol Biol 57:151-161
Lehmann, Clara; Berner, Reinhard; Bogner, Johannes R et al. (2017) The ""Choosing Wisely"" initiative in infectious diseases. Infection 45:263-268
Misharin, Alexander V; Morales-Nebreda, Luisa; Reyfman, Paul A et al. (2017) Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med 214:2387-2404
Gonzalez-Gonzalez, Francisco J; Chandel, Navdeep S; Jain, Manu et al. (2017) Reactive oxygen species as signaling molecules in the development of lung fibrosis. Transl Res 190:61-68
Nin, Nicolas; Muriel, Alfonso; Peñuelas, Oscar et al. (2017) Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Med 43:200-208
Vadász, István; Sznajder, Jacob I (2017) Gas Exchange Disturbances Regulate Alveolar Fluid Clearance during Acute Lung Injury. Front Immunol 8:757
Wolff, Bernard J; Bramley, Anna M; Thurman, Kathleen A et al. (2017) Improved Detection of Respiratory Pathogens by Use of High-Quality Sputum with TaqMan Array Card Technology. J Clin Microbiol 55:110-121
Magnani, Natalia D; Dada, Laura A; Queisser, Markus A et al. (2017) HIF and HOIL-1L-mediated PKC? degradation stabilizes plasma membrane Na,K-ATPase to protect against hypoxia-induced lung injury. Proc Natl Acad Sci U S A 114:E10178-E10186
McElroy, G S; Chandel, N S (2017) Mitochondria control acute and chronic responses to hypoxia. Exp Cell Res 356:217-222
Zheng, Zhikun; Chiu, Stephen; Akbarpour, Mahzad et al. (2017) Donor pulmonary intravascular nonclassical monocytes recruit recipient neutrophils and mediate primary lung allograft dysfunction. Sci Transl Med 9:

Showing the most recent 10 out of 176 publications