The B3 subfamily of integrins are two-way signaling receptors that play essential roles in cell biology. Their influences on platelet function and vascular biology are particularly prominent. aVB3 receptor serves as a crucial regulation of angiogenesis, the process of blood vessel growth in adult organism which underlies a number of pathologies, including ischemic injury, cancer and tissue repair. Recent studies demonstrated that angiogenesis is a systemic process where vascular cells coordinate actions with immune cells of blood and tissue origin, and circulating blood components. Using a variety of in vivo models we have shown that activation of aVB3 occurs on endothelium at the sites of active angiogenesis and appears to control several angiogenesis-dependent responses including recovery after ischemia, tumor growth and wound healing. Using a knockin mouse model expressing mutant form of B3 unable to undergo phosphorylation, we demonstrated that B3 phosphorylation is essential for neovascularization in vivo. However, abnormal angiogenesis in B3 knockin mice was completely reversed by bone marrow transplantation was and appear to be dictated primarily by B3 integrin on bone marrow derived (BMDC) cells. Many of these recruited cells express CXCR4, a receptor for SDF-1. Moreover, SDF-1 treatment of BMDC seems to modulate cell adhesion via (33 integrin. These studies identified a novel and unconventional function of B3 integrin in angiogenesis and emphasizes that the process of angiogenesis involve co-operation of numerous cell types and tissues. The overall hypothesis to be tested is that aVB3 activation and phosphorylation are essential for in vivo cooperation between blood, bone marrow-derived and endothelial cells. The following Specific Aims are proposed to test our hypothesis:
Aim I. To assess the role of p3 integrin activation and phosphorylation on the interactions between endothelial, bone marrow derived cells and platelets during angiogenesis in vivo. Double transgenic lines, DiYF-GFP and p3-/- GFP mice will be utilized for visualization of BMDC in bone marrow chimeras. We will also determine the role of platelet B3 on angiogenesis and recruitment of BMDC.
Aim II. To assess the molecular and cellular mechanisms controlling interaction between circulating blood cells and endothelium and determine the role of p3 integrin in this process. Endothelial and BMDC cells from WT, B3-/- and B3 knockin mice as well as cells characterized by impaired integrin activation (from Project 1 and 2) will be used.
Aim III. To assess the role of integrin activation in the process of p3 integrindependent adhesion of BMDC to endothelium. We will determine the role of SDF-1/CXCR4 axis in integrinmediated responses. These studies will delineate the cellular and molecular mechanisms of angiogenesis and result in identification of novel therapeutic strategies to treat ischemia, wound and other pathologies.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cleveland Clinic Lerner
United States
Zip Code
Zimman, Alejandro; Titz, Bjoern; Komisopoulou, Evangelia et al. (2014) Phosphoproteomic analysis of platelets activated by pro-thrombotic oxidized phospholipids and thrombin. PLoS One 9:e84488
Plow, Edward F; Das, Mitali (2014) Rising like the phoenix? Arterioscler Thromb Vasc Biol 34:2182-3
Sossey-Alaoui, Khalid; Pluskota, Elzbieta; Davuluri, Gangarao et al. (2014) Kindlin-3 enhances breast cancer progression and metastasis by activating Twist-mediated angiogenesis. FASEB J 28:2260-71
Soloviev, Dmitry A; Hazen, Stanley L; Szpak, Dorota et al. (2014) Dual role of the leukocyte integrin ?M?2 in angiogenesis. J Immunol 193:4712-21
Das, Mitali; Subbayya Ithychanda, Sujay; Qin, Jun et al. (2014) Mechanisms of talin-dependent integrin signaling and crosstalk. Biochim Biophys Acta 1838:579-88
Davuluri, Gangarao; Augoff, Katarzyna; Schiemann, William P et al. (2014) WAVE3-NF?B interplay is essential for the survival and invasion of cancer cells. PLoS One 9:e110627
Plow, Edward F; Meller, Julia; Byzova, Tatiana V (2014) Integrin function in vascular biology: a view from 2013. Curr Opin Hematol 21:241-7
Gao, Detao; Willard, Belinda; Podrez, Eugene A (2014) Analysis of covalent modifications of proteins by oxidized phospholipids using a novel method of peptide enrichment. Anal Chem 86:1254-62
Yang, Jun; Zhu, Liang; Zhang, Hao et al. (2014) Conformational activation of talin by RIAM triggers integrin-mediated cell adhesion. Nat Commun 5:5880
Kerr, B A; McCabe, N P; Feng, W et al. (2013) Platelets govern pre-metastatic tumor communication to bone. Oncogene 32:4319-24

Showing the most recent 10 out of 63 publications