Accumulating evidence indicates that nitric oxide (NO), through S-nitrosylation of Cys residues within multiple, functionally interrelated signaling elements, regulates agonist-induced desensitization and internalization of B- adrenergic receptors (B-ARs). We have demonstrated that NO synthases and the endogenous S-nitrosothiol (SNO), S-nitrosoglutathione, preserve cardiac contractility and prevent down-regulation of B-ARs during maintained agonist stimulation. These effects of NO/SNO on B-AR signaling and trafficking, which can be recapitulated in cellular systems, appear to be mediated, in significant part, by S-nitrosylation of the G protein-coupled receptor (GPCR) kinase, GRK2. Additional components of the B-AR system are also regulated by S-nitrosylation, which suggests a broad functional role for NO/SNO, exerted through targeted S-nitrosylation. In particular, we have recently identified the B-arrestins (Barr1 and Barr2) as targets of B-AR-coupled S-nitrosylation by NO synthases (eNOS and nNOS). S-nitrosylation of Barr2 by eNOS at a single critical site (Cys 410) regulates its protein-protein interactions with clathrin and adapter protein-2 (AP-2) in vitro and in vivo, thereby promoting agonist-mediated B{2}-AR internalization. However, differential regulation of Barr1 and Barr2 by S-nitrosylation and the consequences of these modifications for cardiac function, have not been explored. Our central hypothesis is that S-nitrosylation of the B-arrestins will provide a basis for control by NO of B-AR trafficking and signaling, with important ramifications in healthy and failing hearts. Moreover, we predict that the regulation of Barr1- and Barr2-specific interactomes by S-nitrosylation will provide a principal mechanism through which NO exerts its regulatory influence. We will carry out the following specific aims:
Specific Aim 1. Elucidate the sites of agonist-dependent S-nitrosylation of the B-arrestins by eNOS and nNOS in cells and tissues.
Specific Aim 2. Elucidate the consequences of B-arrestin S-nitrosylation for B-AR internalization and desensitization.
Specific Aim 3. Assess the consequences of B-arrestin S-nitrosylation for p-AR-dependent signaling.
Specific Aim 4. Assess the functional roles of B-arrestin S-nitrosylation in the intact heart. Collectively, these studies should provide fundamental and novel insights into B-AR regulation by NO in both healthy and failing hearts and may open a new area of research.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL075443-09
Application #
8469557
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
9
Fiscal Year
2013
Total Cost
$336,630
Indirect Cost
$120,842
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Wang, JuFang; Song, Jianliang; Gao, Erhe et al. (2014) Induced overexpression of phospholemman S68E mutant improves cardiac contractility and mortality after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 306:H1066-77
Huang, Zheng Maggie; Gao, Erhe; Chuprun, J Kurt et al. (2014) GRK2 in the heart: a GPCR kinase and beyond. Antioxid Redox Signal 21:2032-43
Kim, Il-Man; Wang, Yongchao; Park, Kyoung-Mi et al. (2014) *-arrestin1-biased *1-adrenergic receptor signaling regulates microRNA processing. Circ Res 114:833-44
Brinks, Henriette; Giraud, Marie-Noelle; Segiser, Adrian et al. (2014) Dynamic patterns of ventricular remodeling and apoptosis in hearts unloaded by heterotopic transplantation. J Heart Lung Transplant 33:203-10
Shinozaki, Shohei; Chang, Kyungho; Sakai, Michihiro et al. (2014) Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65. Sci Signal 7:ra106
Woodall, Meryl C; Ciccarelli, Michele; Woodall, Benjamin P et al. (2014) G protein-coupled receptor kinase 2: a link between myocardial contractile function and cardiac metabolism. Circ Res 114:1661-70
Brady, Donita C; Crowe, Matthew S; Turski, Michelle L et al. (2014) Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature 509:492-6
Bathgate-Siryk, Ashley; Dabul, Samalia; Pandya, Krunal et al. (2014) Negative impact of *-arrestin-1 on post-myocardial infarction heart failure via cardiac and adrenal-dependent neurohormonal mechanisms. Hypertension 63:404-12
Scimia, Maria Cecilia; Blass, Benjamin E; Koch, Walter J (2014) Apelin receptor: its responsiveness to stretch mechanisms and its potential for cardiovascular therapy. Expert Rev Cardiovasc Ther 12:733-41
Weber, C; Neacsu, I; Krautz, B et al. (2014) Therapeutic safety of high myocardial expression levels of the molecular inotrope S100A1 in a preclinical heart failure model. Gene Ther 21:131-8

Showing the most recent 10 out of 103 publications