Mouse Physiology and Phenotyping: The small animal physiology core will provide two major services to all four of the projects in this PPG: 1) pathological and physiological models of cardiac hypertrophy and heart failure in mice, and 2) complete and comprehensive phenotyping of wild type and genetically modified mice.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL075443-10
Application #
8687717
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
10
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Duke University
Department
Type
DUNS #
City
Durham
State
NC
Country
United States
Zip Code
27705
Kim, Jihee; Grotegut, Chad A; Wisler, James W et al. (2018) ?-arrestin 1 regulates ?2-adrenergic receptor-mediated skeletal muscle hypertrophy and contractility. Skelet Muscle 8:39
Zhou, Hua-Lin; Stomberski, Colin T; Stamler, Jonathan S (2018) Cross Talk Between S-Nitrosylation and Phosphorylation Involving Kinases and Nitrosylases. Circ Res 122:1485-1487
de Lucia, Claudio; Gambino, Giuseppina; Petraglia, Laura et al. (2018) Long-Term Caloric Restriction Improves Cardiac Function, Remodeling, Adrenergic Responsiveness, and Sympathetic Innervation in a Model of Postischemic Heart Failure. Circ Heart Fail 11:e004153
Grisanti, Laurel A; Schumacher, Sarah M; Tilley, Douglas G et al. (2018) Designer Approaches for G Protein-Coupled Receptor Modulation for Cardiovascular Disease. JACC Basic Transl Sci 3:550-562
de Lucia, Claudio; Eguchi, Akito; Koch, Walter J (2018) New Insights in Cardiac ?-Adrenergic Signaling During Heart Failure and Aging. Front Pharmacol 9:904
Wang, Jialu; Hanada, Kenji; Gareri, Clarice et al. (2018) Mechanoactivation of the angiotensin II type 1 receptor induces ?-arrestin-biased signaling through G?i coupling. J Cell Biochem 119:3586-3597
Hayashi, Hiroki; Hess, Douglas T; Zhang, Rongli et al. (2018) S-Nitrosylation of ?-Arrestins Biases Receptor Signaling and Confers Ligand Independence. Mol Cell 70:473-487.e6
Rizza, Salvatore; Cardaci, Simone; Montagna, Costanza et al. (2018) S-nitrosylation drives cell senescence and aging in mammals by controlling mitochondrial dynamics and mitophagy. Proc Natl Acad Sci U S A 115:E3388-E3397
Cannavo, Alessandro; Koch, Walter J (2018) GRK2 as negative modulator of NO bioavailability: Implications for cardiovascular disease. Cell Signal 41:33-40
Wang, Jialu; Gareri, Clarice; Rockman, Howard A (2018) G-Protein-Coupled Receptors in Heart Disease. Circ Res 123:716-735

Showing the most recent 10 out of 167 publications