Introduction: Changes in protein expression and post-translational modifications (PTMs) are essential mechanisms for biological regulation in normal physiology and numerous diseases, including those of the cardiovascular disease [1-4]. Characterizing these changes can provide valuable information for the elucidation of disease etiology, identification of clinically useful biomarkers, and development of novel therapeutics. Thus, methods for the identification of proteins and characterization of protein PTMs are essential to modern biomedical research. In recent years, mass spectrometry (MS)-based proteomics has become the technology of choice for these purposes. MS-based proteomics takes advantage of the modern mass spectrometer's superior resolution power and accuracy in peptide sequencing [5]. It allows for the rapid, large-scale identification and quantification of proteins and their PTMs in multiprotein complexes, whole cells, tissues and organisms with sub-femto mole level sensitivity (100-1000 times more sensitive than traditional technologies). Recently, MS combined with stable isotope labeling technologies (i.e. quantitative proteomics) has emerged as a powerful tool to quantitatively assess dynamic changes in protein expression, subcellular compartmentalization and PTMs on a proteome-wide scale [6]. Therefore, MS-based proteomics is unequaled as a tool for studying complex biological systems and disease in the post-genomic era. All these various tools are particularly applicable to cardiovascular research and should allow us to carry out the goals of this PPG. The ability to deliver genes efficiently to cultured cardiomyocytes and in vivo to the rodent heart is critical to many of the experiments described in the three PPG projects. Viral vectors offer greater transduction efficiency to cultured cardiomyocytes than nonviral methodology such as plasmid DNA delivery via liposomal reagents, electroporation or nucleofector techniques [7]. Similarly, viral vectors are more efficient than non-viral gene delivery methods in mediating gene delivery in vivo to the heart [8]. The Viral Vector Core will provide adenoviral and adeno-associated viral vector development, manufacturing, purification, and validation services to this PPG.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL075443-10
Application #
8687718
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
10
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Duke University
Department
Type
DUNS #
City
Durham
State
NC
Country
United States
Zip Code
27705
Cannavo, Alessandro; Rengo, Giuseppe; Liccardo, Daniela et al. (2017) ?1-Blockade Prevents Post-Ischemic Myocardial Decompensation Via ?3AR-Dependent Protective Sphingosine-1 Phosphate Signaling. J Am Coll Cardiol 70:182-192
Schumacher, Sarah M; Koch, Walter J (2017) Noncanonical Roles of G Protein-coupled Receptor Kinases in Cardiovascular Signaling. J Cardiovasc Pharmacol 70:129-141
Lai, Thung-S; Lindberg, Robert A; Zhou, Hua-Lin et al. (2017) Endothelial cell-surface tissue transglutaminase inhibits neutrophil adhesion by binding and releasing nitric oxide. Sci Rep 7:16163
Waldschmidt, Helen V; Homan, Kristoff T; Cato, Marilyn C et al. (2017) Structure-Based Design of Highly Selective and Potent G Protein-Coupled Receptor Kinase 2 Inhibitors Based on Paroxetine. J Med Chem 60:3052-3069
Eisner, Verónica; Cupo, Ryan R; Gao, Erhe et al. (2017) Mitochondrial fusion dynamics is robust in the heart and depends on calcium oscillations and contractile activity. Proc Natl Acad Sci U S A 114:E859-E868
Bouley, Renee; Waldschmidt, Helen V; Cato, M Claire et al. (2017) Structural Determinants Influencing the Potency and Selectivity of Indazole-Paroxetine Hybrid G Protein-Coupled Receptor Kinase 2 Inhibitors. Mol Pharmacol 92:707-717
Jean-Charles, Pierre-Yves; Yu, Samuel Mon-Wei; Abraham, Dennis et al. (2017) Mdm2 regulates cardiac contractility by inhibiting GRK2-mediated desensitization of ?-adrenergic receptor signaling. JCI Insight 2:
Elphinstone, Robyn E; Besla, Rickvinder; Shikatani, Eric A et al. (2017) S-Nitrosoglutathione Reductase Deficiency Confers Improved Survival and Neurological Outcome in Experimental Cerebral Malaria. Infect Immun 85:
Waldschmidt, Helen V; Homan, Kristoff T; Cruz-Rodríguez, Osvaldo et al. (2016) Structure-Based Design, Synthesis, and Biological Evaluation of Highly Selective and Potent G Protein-Coupled Receptor Kinase 2 Inhibitors. J Med Chem 59:3793-807
Zhang, Rongli; Hess, Douglas T; Reynolds, James D et al. (2016) Hemoglobin S-nitrosylation plays an essential role in cardioprotection. J Clin Invest 126:4654-4658

Showing the most recent 10 out of 155 publications