The long-term goal of Project 3 is to define mechanisms that cause endothelial NO synthase (eNOS) to dysfunction and generate (in addition to NO) reactive oxygen and nitrogen species (oxidants) that cause oxidative damage in inflammatory diseases. We hypothesize that two unique aspects of eNOS are critical for its proper function and also predispose eNOS to be susceptible to dysfunction leading to oxidative damage: 1) eNOS redox cycling of its cofactor tetrahydrobiopterin (H4B);and 2) eNOS protein-protein interactions. Mechanisms that control these aspects are unclear and are the focus of this proposal. We will determine mechanisms at a molecular, kinetic, and structural level and ultimately translate them to cellular and clinical studies.
AIM 1 will test if inefficient H4B redox cycling occurs in eNOS and predisposes it to uncoupled NO synthesis and oxidant formation. We will: (i) Quantify H4B redox cycling in eNOS and develop a kinetic model to explain oxidant formation, (ii) Test eNOS mutants for improved H4B redox cycling and less oxidant formation, and (iii) Measure metabolic indices associated with enhanced eNOS uncoupling to determine if they are linked with increased systemic indices of nitrative stress and prevalence for cardiovascular disease in humans.
AIM 2 will investigate how eNOS function is controlled by interactions with heat shock protein 90 (HSP90). We will: (i) Test the hypothesis that HSP90 improves eNOS function by affecting specific catalytic steps in eNOS. (ii) Utilize fluorescence labeling, mass spectrometry, calorimetry, and protein crystallography to investigate HSP90 and Cav1 binding to eNOS, conformational changes that accompany binding, and mechanism for their effects on eNOS. (iii) Design site-specific mutants of eNOS with modified responses to Cavl and HSP90 and test their function, (iv) Determine mechanisms that enable phosphorylation and activation of eNOS when bound in a trimeric complex with HSP90 and the kinase Akt1. and (v) Investigate if a single nucleotide polymorphism in eNOS (Asp298Glu) associated with increased cardiovascular risk impacts HSP90 interactions with eNOS. Collectively, the proposed studies will provide a deep mechanistic understanding of factors regulating eNOS fucntion and dysfunction in cardiovascular disease.

Public Health Relevance

By clarifying the mechanisms that control Nitric oxide production at the protein and enzyme level, our work may help to develop treatments for cardiovascular diseases that involve making too much or too little NO.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cleveland Clinic Lerner
United States
Zip Code
Tang, W H Wilson; Wang, Zeneng; Shrestha, Kevin et al. (2015) Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail 21:91-6
Grodin, Justin L; Hammadah, Muhammad; Fan, Yiying et al. (2015) Prognostic value of estimating functional capacity with the use of the duke activity status index in stable patients with chronic heart failure. J Card Fail 21:44-50
Grodin, Justin L; Neale, Sarah; Wu, Yuping et al. (2015) Prognostic comparison of different sensitivity cardiac troponin assays in stable heart failure. Am J Med 128:276-82
Christian, Abigail J; Lin, Hongqiao; Alferiev, Ivan S et al. (2014) The susceptibility of bioprosthetic heart valve leaflets to oxidation. Biomaterials 35:2097-102
Shao, Zhili; Zhang, Renliang; Shrestha, Kevin et al. (2014) Usefulness of elevated urine neopterin levels in assessing cardiac dysfunction and exercise ventilation inefficiency in patients with chronic systolic heart failure. Am J Cardiol 113:1839-43
Brown, J Mark; Hazen, Stanley L (2014) Metaorganismal nutrient metabolism as a basis of cardiovascular disease. Curr Opin Lipidol 25:48-53
Ghosh, Arnab; Stasch, Johannes-Peter; Papapetropoulos, Andreas et al. (2014) Nitric oxide and heat shock protein 90 activate soluble guanylate cyclase by driving rapid change in its subunit interactions and heme content. J Biol Chem 289:15259-71
Brown, J Mark; Hazen, Stanley L (2014) Seeking a unique lipid signature predicting cardiovascular disease risk. Circulation 129:1799-803
Ray, Partho Sarothi; Fox, Paul L (2014) Origin and evolution of glutamyl-prolyl tRNA synthetase WHEP domains reveal evolutionary relationships within Holozoa. PLoS One 9:e98493
Hammadah, Muhammad; Fan, Yiying; Wu, Yuping et al. (2014) Prognostic value of elevated serum ceruloplasmin levels in patients with heart failure. J Card Fail 20:946-52

Showing the most recent 10 out of 177 publications