Core B confinues to serve the role it played in our present PPG, but with the total number of dogs to be studied reduced, and with introduction of a mouse component and incorporafion of phenotyping as a general service to the program. Core B provides all animal models to the three Projects, and Core C studies, and provides non-invasive echo-Doppler phenotyping of these models so that molecular and cellular data can be related to intact organ behavior and each model is confirmed to reflect the primary physiology it is designed to do. Mouse phenotyping using echo as well as terminal study pressure-volume loop analysis will also be the responsibility ofthis Core. Table 1 provides the general interaction of Core B services to the projects and other core. The strength of the interaction is identified qualitatively by the number of + signs. All three of the projects extensively ufilize the canine model, with both molecular, cellular and sub-organelle studies described. The mouse model is primary utilized in Project 1, but myocytes and myocardial fissue from the model will be examined for calcium cycling abnormalifies in Project 2 and for mitochondrial function and protein modifications in Project 3. This will enable us to test the consistency of primary findings in calcium cycling, electrophysiology, and mitochondrial function changes between DHF and CRT conditions across species. For the canine model, the core provides primary services generafing the model, performing necessary procedures - i.e. ablation and pacemaker implantation, and fissue harvesfing. For the mouse models, the core will provide overall colony maintenance, genetic monitoring and genotyping as required, and make tissues and cells available to the other Projects. The second major role of the Core also services all Projects, and is to provide phenotyping of each animal to confirm that the model intended by its instrumentation and design indeed resulted in synchronous, dyssynchronous, or resynchronized HF, quantify the magnitude of the effects generated on global and regional chamber funcfion, and assess dysynchrony in these hearts.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL077180-10
Application #
8686050
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
10
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Wang, Sheng-Bing; Venkatraman, Vidya; Crowgey, Erin L et al. (2018) Protein S-Nitrosylation Controls Glycogen Synthase Kinase 3? Function Independent of Its Phosphorylation State. Circ Res 122:1517-1531
Barth, Andreas S; Kumordzie, Ami; Tomaselli, Gordon F (2016) Orchestrated regulation of energy supply and energy expenditure: Transcriptional coexpression of metabolism, ion homeostasis, and sarcomeric genes in mammalian myocardium. Heart Rhythm 13:1131-1139
Barth, Andreas S; Tomaselli, Gordon F (2016) Gene scanning and heart attack risk. Trends Cardiovasc Med 26:260-5
O'Rourke, Brian; Liu, Ting; Foster, D Brian (2016) Seeing the Forest for the Trees. Circ Res 119:1170-1172
DeMazumder, Deeptankar; Kass, David A; O'Rourke, Brian et al. (2015) Cardiac resynchronization therapy restores sympathovagal balance in the failing heart by differential remodeling of cholinergic signaling. Circ Res 116:1691-9
Chung, Heaseung Sophia; Murray, Christopher I; Venkatraman, Vidya et al. (2015) Dual Labeling Biotin Switch Assay to Reduce Bias Derived From Different Cysteine Subpopulations: A Method to Maximize S-Nitrosylation Detection. Circ Res 117:846-57
Kirk, Jonathan A; Kass, David A (2015) Cellular and Molecular Aspects of Dyssynchrony and Resynchronization. Card Electrophysiol Clin 7:585-97
Kaushik, Gaurav; Spenlehauer, Alice; Sessions, Ayla O et al. (2015) Vinculin network-mediated cytoskeletal remodeling regulates contractile function in the aging heart. Sci Transl Med 7:292ra99
Kwon, Chulan; Tomaselli, Gordon F (2015) Coins of the realm in atrioventricular junction development. Circ Res 116:386-8
Tomaselli, Gordon F (2015) Introduction to a compendium on sudden cardiac death: epidemiology, mechanisms, and management. Circ Res 116:1883-6

Showing the most recent 10 out of 124 publications