The central objective of Project 1 is to define the properties of the novel, oxidant-sensitive transient receptor potenfial melastafin (TRPM)2, a Ca(2+)-permeable channel in lung endothelial cells (ECs), how it regulates Ca(2+) signaling, and its role in the mechanism of neutrophil-dependent increases in lung vascular permeability and infiammatory injury. Our approach will be to identify the essenfial role of neutrophil-EC interactions in activafing the TRPM2 channel, then its mechanism of activation, and finally define how TRPM2 activation leads to increased lung endothelial permeability and transmigration of PMNs at the level of adherens juncfions.
Aim #1 will test the hypothesis that PMN interaction with the lung endothelium via beta2-integrin/ICAM-1 binding increases lung vascular permeability through the activation of TRPM2 channels in ECs.
Aim #2 will define the role of the short splice variant of TRPM2, TRPM2-S. in regulafing TRPM2-mediated Ca2+ entry in lung ECs and in the mechanism of endothelial hyper-permeability and PMN transmigration.
Aim #3 will determine the role of NF-kappaB-dependent ICAM-1 expression in amplifying TRPM2 acfivity in ECs and thereby in mediating PMN-dependent lung infiammatory injury. The proposed studies will use molecular, genefic. and physiological approaches in EC monolayers co-cultured with PMNs and mouse lung models (including the recentiy developed TRPM2(-/-) mice). These data will provide new insights into the mechanisms of acute lung injury and specifically theTRPM2-activated pathways that mediate lung injury. Furthermore, we believe that it will be possible, with a new understanding of this transcellular cross-talk, to block inappropriate neutrophil-EC interacfions and PMN-mediated lung injury by interfering with TRPM2-activated signaling pathways.

Public Health Relevance

Project 1 of this Program seeks to define the properties of a calcium-permeable plasma membrane channel on lung endothelial cells that is acfivated by the interaction of endothelial cells with activated circulating neutrophils. We will study the role that this interacfion and channel acfivafion has on inflammatory injury in the lung vasculature and identify potential therapeutic targets in the signaling pathways.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Illinois at Chicago
United States
Zip Code
Evans, Colin E; Zhao, You-Yang (2017) Impact of thrombosis on pulmonary endothelial injury and repair following sepsis. Am J Physiol Lung Cell Mol Physiol 312:L441-L451
Du, Xueke; Jiang, Chunling; Lv, Yang et al. (2017) Isoflurane promotes phagocytosis of apoptotic neutrophils through AMPK-mediated ADAM17/Mer signaling. PLoS One 12:e0180213
Di, Anke; Kiya, Tomohiro; Gong, Haixia et al. (2017) Role of the phagosomal redox-sensitive TRP channel TRPM2 in regulating bactericidal activity of macrophages. J Cell Sci 130:735-744
Mittal, Manish; Nepal, Saroj; Tsukasaki, Yoshikazu et al. (2017) Response by Mittal et al to Letter Regarding Article, ""Neutrophil Activation of Endothelial Cell-Expressed TRPM2 Mediates Transendothelial Neutrophil Migration and Vascular Injury"". Circ Res 121:e87
Cheng, Kwong Tai; Xiong, Shiqin; Ye, Zhiming et al. (2017) Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J Clin Invest 127:4124-4135
Reddy, Sekhar P; Mehta, Dolly (2017) Lung Interstitial Macrophages Redefined: It Is Not That Simple Anymore. Am J Respir Cell Mol Biol 57:135-136
Li, Liping; Sheng, Yue; Li, Wenshu et al. (2017) ?-Catenin Is a Candidate Therapeutic Target for Myeloid Neoplasms with del(5q). Cancer Res 77:4116-4126
Evans, Colin E; Zhao, You-Yang (2017) Molecular Basis of Nitrative Stress in the Pathogenesis of Pulmonary Hypertension. Adv Exp Med Biol 967:33-45
Tsang, Kit Man; Hyun, James S; Cheng, Kwong Tai et al. (2017) Embryonic Stem Cell Differentiation to Functional Arterial Endothelial Cells through Sequential Activation of ETV2 and NOTCH1 Signaling by HIF1?. Stem Cell Reports 9:796-806
Zhang, Chongxu; Adamos, Crystal; Oh, Myung-Jin et al. (2017) oxLDL induces endothelial cell proliferation via Rho/ROCK/Akt/p27kip1 signaling: opposite effects of oxLDL and cholesterol loading. Am J Physiol Cell Physiol 313:C340-C351

Showing the most recent 10 out of 99 publications