Support is requested to continue a program designed to advance understanding of molecular mechanisms of vascular disease and to promote development of new diagnostic, therapeutic, and preventive strategies through the collaborative efforts of a group of experienced scientists focused oh the unifying theme of cell adhesion. This interdisciplinary program will span disciplines of biochemistry, cell biology, ex-vivo and in vivo studies to assess the effects of blood flow on adhesion and signaling, and analysis of genetically-modified mice and zebrafish. In Project 1, Dr. Ginsberg will study the activation of integrins and resulting thrombus formation by platelets and arrest of leukocytes. Specific studies will address the activation of integrins in purified systems, the role of RIAM, the interactions and structure of integrin transmembrane domains, and the in vivo and ex vivo consequences of perturbing integrin activation in platelets and leukocytes. In Project 2, Dr.Shattil will continue to develop and utilize strategies to visualize interactions of proteins with platelet integrin alpha lIb beta 3 in living cells and he will analyze the signaling mechanisms of alpha V integrins in vivo in zebrafish. In Project 3, Dr. Ruggeri will build on advances in the structure of von Willebrand Factor (VWF) and platelet GPIb. Specifically, he will seek to better understand the biomechanical properties of the bonds between GPIb and VWF in flowing blood, the effects of thrombin on the GPlb/VWF interaction, and the biological role of a newly-discovered immunoglobulin modulator of thrombosis. Mouse Genetics Core Unit A, led by Dr. Petrich, will provide expertise, genomic constructs, genotyping, well characterized murine embryonic stem cells, and blastocyst injections for the purpose of genetic manipulation of mice. This core will be used to generate talin knock-ins that selectively perturb integrin activation and will provide conditional transgenic animals. Microfluidics Core Unit B, led by Dr. Groisman, a physicist, will develop and provide high throughput multichannel microfluidic flow systems to analyze platelet and leukocyte adhesion to conventional and patterned substrates under controlled shear stress. Administrative Core Unit C will continue to provide administrative support. Altogether, this interdisciplinary program will enable remarkable synergies amongst a group of accomplished investigators who will test new hypotheses and utilize and develop cutting edge methodologies to advance understanding of cell adhesion events in vascular biology and thrombosis.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Kindzelski, Andrei L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Internal Medicine/Medicine
Schools of Medicine
La Jolla
United States
Zip Code
Fitzpatrick, Paul; Shattil, Sanford J; Ablooglu, Ararat J (2014) C-terminal COOH of integrin ?1 is necessary for ?1 association with the kindlin-2 adapter protein. J Biol Chem 289:11183-93
Li, A; Guo, Q; Kim, C et al. (2014) Integrin ?II b tail distal of GFFKR participates in inside-out ?II b ?3 activation. J Thromb Haemost 12:1145-55
Liu, Yani; Davidson, Brian P; Yue, Qi et al. (2013) Molecular imaging of inflammation and platelet adhesion in advanced atherosclerosis effects of antioxidant therapy with NADPH oxidase inhibition. Circ Cardiovasc Imaging 6:74-82
Cantor, Joseph M; Ginsberg, Mark H (2012) CD98 at the crossroads of adaptive immunity and cancer. J Cell Sci 125:1373-82
Banno, Asoka; Goult, Benjamin T; Lee, HoSup et al. (2012) Subcellular localization of talin is regulated by inter-domain interactions. J Biol Chem 287:13799-812
Kim, Chungho; Schmidt, Thomas; Cho, Eun-Gyung et al. (2012) Basic amino-acid side chains regulate transmembrane integrin signalling. Nature 481:209-13
Ye, Feng; Kim, Chungho; Ginsberg, Mark H (2012) Reconstruction of integrin activation. Blood 119:26-33
Gutierrez, Edgar; Groisman, Alex (2011) Measurements of elastic moduli of silicone gel substrates with a microfluidic device. PLoS One 6:e25534
Gutierrez, Edgar; Tkachenko, Eugene; Besser, Achim et al. (2011) High refractive index silicone gels for simultaneous total internal reflection fluorescence and traction force microscopy of adherent cells. PLoS One 6:e23807
Qu, Hong; Tu, Yizeng; Shi, Xiaohua et al. (2011) Kindlin-2 regulates podocyte adhesion and fibronectin matrix deposition through interactions with phosphoinositides and integrins. J Cell Sci 124:879-91

Showing the most recent 10 out of 64 publications