The myocardium is largely unable to effecfively repair itself following an infarcfion. Recent work indicates that resident cardiac progenitor cells (CPCs) represent an under-developed therapeutic target. Unfortunately, the post-ischemic myocardium is an unfavorable environment for the survival and potenfial cardiomyogenic differentiation of CPCs, thereby limlfing effective post-ischemic myocardial repair of exogenously administered CPCs. Project 3 will address the biological regulation of stress signaling and its impact on CPC function. Recently, several reports indicated a unique stress response (0-GlcNAc) in the heart that allows differenfiated cardiac myocytes to withstand the violent environment of the post-ischemic myocardium. Protein 0-GlcNAcylafion occurs in every mulficellular organism that has been examined;yet, nothing is known about the role of this stress signal in CPCs. This Project will directly address this deficiency to create new biological insights. Project 3 will test the central hypothesis that a unique alarm signal (0-GlcNAc) plays a fundamental role in regulafing CPC function and that it promotes CPC survival, but may limit bona fide post-ischemic cardiomyogenesis by maintaining CPCs in a persistent state of alarm. Project 3 will establish the impact of the pro-adaptive stress signal, 0-GlcNAc, on CPC function by specifically focusing on proliferation (Aim 1), survival (Aim 2), and differenfiafion (Aim 3). This Project will use an exhausfive series of carefully controlled loss- and gain-of-function approaches. Regardless of the specific outcomes of the Alms, this Project will provide completely novel Insights into an exclfing area of cardiovascular medicine because of the significance of the quesfions being pursued. Project 3 will confinue to collaborate with Projects 1, 2, and 4 to understand innovafive inter-regulatory mechanisms between O- GlcNAcylation and: the NO-CO axis (Project 1), TNF-NFkB induced inflammation (Project 2), and hyperglycemic suppression of CPC function (Project 4). The role of protein 0-GlcNAcylafion in CPCs is completely unknown. This Project will undoubtedly establish new biological insights by assuming an innovative approach to understanding CPC regulation and pathophysiology.

Public Health Relevance

Project 3 will establish completely innovafive insights into the regulation of the proliferation, survival, and dlfferenfiation of primitive cells in the heart and translate the findings into a clinically relevant model of heart failure. Regardless of the specific outcomes of the Aims, Project 3 will provide completely novel insights into a unique form of stress signaling as a previously unrecognized regulator of progenitor cell function.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL078825-07
Application #
8379699
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
7
Fiscal Year
2012
Total Cost
$274,131
Indirect Cost
$90,699
Name
University of Louisville
Department
Type
DUNS #
057588857
City
Louisville
State
KY
Country
United States
Zip Code
40292
Gibb, Andrew A; Epstein, Paul N; Uchida, Shizuka et al. (2017) Exercise-Induced Changes in Glucose Metabolism Promote Physiological Cardiac Growth. Circulation 136:2144-2157
Jones, Steven P (2017) I'll Have the Rigor, but Hold the Mortis. Circ Res 120:1852-1854
Dassanayaka, Sujith; Brainard, Robert E; Watson, Lewis J et al. (2017) Cardiomyocyte Ogt limits ventricular dysfunction in mice following pressure overload without affecting hypertrophy. Basic Res Cardiol 112:23
Wysoczynski, Marcin; Adamiak, Mateusz; Suszynska, Malwina et al. (2017) Poor Mobilization in T-Cell-Deficient Nude Mice Is Explained by Defective Activation of Granulocytes and Monocytes. Cell Transplant 26:83-93
Bolli, Roberto (2017) Repeated Cell Therapy: A Paradigm Shift Whose Time Has Come. Circ Res 120:1072-1074
Guo, Yiru; Wysoczynski, Marcin; Nong, Yibing et al. (2017) Repeated doses of cardiac mesenchymal cells are therapeutically superior to a single dose in mice with old myocardial infarction. Basic Res Cardiol 112:18
Wysoczynski, Marcin; Guo, Yiru; Moore 4th, Joseph B et al. (2017) Myocardial Reparative Properties of Cardiac Mesenchymal Cells Isolated on the Basis of Adherence. J Am Coll Cardiol 69:1824-1838
Singh, Mahavir; Kapoor, Aniruddh; McCracken, James et al. (2017) Aldose reductase (AKR1B) deficiency promotes phagocytosis in bone marrow derived mouse macrophages. Chem Biol Interact 265:16-23
Kingery, Justin R; Hamid, Tariq; Lewis, Robert K et al. (2017) Leukocyte iNOS is required for inflammation and pathological remodeling in ischemic heart failure. Basic Res Cardiol 112:19
Eschenhagen, Thomas; Bolli, Roberto; Braun, Thomas et al. (2017) Cardiomyocyte Regeneration: A Consensus Statement. Circulation 136:680-686

Showing the most recent 10 out of 174 publications