The development of ventricular fibrillation (VF) and sudden cardiac death include several key steps, such as initiation of reentry, degeneration to multiple reentrant waves, and maintenance of VF. issue heterogeneity has been traditionally considered as the major cause for these key steps leading to VF. However, recent studies indicate that dynamic wave instability operates synergistically with pre-existing tissue heterogeneity to promote wavebreak. Dynamic wave stability is regulated by multiple factors, including electrical restitution, intracellular Ca (Cai) cycling, cardiac memory, and electrotonic currents. The goal of this project is to use computer simulations with simplified models to developed theories which identify the critical parameters controlling the development of VF, as the theoretical basis for novel therapeutic strategies. The central task of this project is to investigate how voltage, Cai, and tissue heterogeneity interact to regulate vulnerability to rentry and maintenace of VF.
The first aim i s to develop simplified models to investigate the nonlinear dynamics of Cai cycling coupled to membrane voltage, in order to understand dynamical mechanisms of cardiac alternans.
The second aim i s to use physiologically-detailed AP models in homogeneous tissues to determine the physiological mechanisms by which voltage-Cai dynamics promotes spatially discordant alternans, dispersion of refractoriness, wave instability and arrhythmogenesis.
The third aim i s to determine how voltage-Cai dynamics interacts with tissue heterogeneities to regulate spatially discordant alternans, dispersion of refractoriness, wave instability and arrhythmogenesis. This project will develop general theories which will then be validated in more realistic settings in Projects 1, 3, and 4. The approach in this project will allow us to extensively explore the parameter space and systematically investigate the mechanisms of VF initiation and maintenance to identify the critical parameters essential for developing novel therapeutic strategies.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL078931-05
Application #
7866510
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
5
Fiscal Year
2009
Total Cost
$300,044
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Kung, Geoffrey L; Vaseghi, Marmar; Gahm, Jin K et al. (2018) Microstructural Infarct Border Zone Remodeling in the Post-infarct Swine Heart Measured by Diffusion Tensor MRI. Front Physiol 9:826
Jiang, Zhaolei; Zhao, Ye; Tsai, Wei-Chung et al. (2018) Effects of Vagal Nerve Stimulation on Ganglionated Plexi Nerve Activity and Ventricular Rate in Ambulatory Dogs With Persistent Atrial Fibrillation. JACC Clin Electrophysiol 4:1106-1114
Yin, Dechun; Chen, Mu; Yang, Na et al. (2018) Role of apamin-sensitive small conductance calcium-activated potassium currents in long-term cardiac memory in rabbits. Heart Rhythm 15:761-769
Chen, Mu; Xu, Dong-Zhu; Wu, Adonis Z et al. (2018) Concomitant SK current activation and sodium current inhibition cause J wave syndrome. JCI Insight 3:
Yuan, Yuan; Jiang, Zhaolei; Zhao, Ye et al. (2018) Long-term intermittent high-amplitude subcutaneous nerve stimulation reduces sympathetic tone in ambulatory dogs. Heart Rhythm 15:451-459
Shelton, Richard S; Ogawa, Masahiro; Lin, Hongbo et al. (2018) Effects of Stellate Ganglion Cryoablation on Subcutaneous Nerve Activity and Atrial Tachyarrhythmias in a Canine Model of Pacing-Induced Heart Failure. JACC Clin Electrophysiol 4:686-695
Zhao, Ye; Yuan, Yuan; Tsai, Wei-Chung et al. (2018) Antiarrhythmic effects of stimulating the left dorsal branch of the thoracic nerve in a canine model of paroxysmal atrial tachyarrhythmias. Heart Rhythm 15:1242-1251
Pezhouman, Arash; Cao, Hong; Fishbein, Michael C et al. (2018) Atrial Fibrillation Initiated by Early Afterdepolarization-Mediated Triggered Activity during Acute Oxidative Stress: Efficacy of Late Sodium Current Blockade. J Heart Health 4:
Perotti, Luigi E; Ponnaluri, Aditya V S; Krishnamoorthi, Shankarjee et al. (2017) Method for the unique identification of hyperelastic material properties using full-field measures. Application to the passive myocardium material response. Int J Numer Method Biomed Eng 33:
Tsai, Wei-Chung; Chan, Yi-Hsin; Chinda, Kroekkiat et al. (2017) Effects of renal sympathetic denervation on the stellate ganglion and brain stem in dogs. Heart Rhythm 14:255-262

Showing the most recent 10 out of 275 publications