The goal of this Program Project is to develop novel antiarrhythmic approaches based on improved understanding of the arrhythmia mechanisms causing sudden cardiac death. Project 4 will combine biological experiments and mathematical modeling to study how the interaction between the L-type Ca curret (l{Ca,L}), the Ca{i} transient and other Ca-sensitive currents lead to early afterdepolarizations (EADs) in normal and failing ventricular myocytes (Aim 1). This analysis will then be used to guide development of therapeutic strategies to suppress EADs and EAD-mediated arrhythmias by modifying I{Ca,L} properties (Aim 2). We will utilize the dynamic patch clamp approach which permits virtual currents to be added and interact bidirectionally with the endogenous currents of a live myocyte. EADs will be induced with various interventions, and then suppressed by the Ca channel blocker nifedepine. In stages, the dynamic clamp will add back a virtual I{Ca,L} virtual Ca;transient, and other Ca-sensitive currents to determine the necessary interactions required to reconstitute EADs. Given the critical importance of the I{Ca,L} window current in EAD formation, we will use the dynamic clamp approach to explore how the kinetic and/or voltage dependent properties of I{Ca,L} can be modified to suppress "reconstituted" EADs in isolated myocytes. The normal I{Ca,L} in the dynamic clamp will be replaced with an appropriately modified virtual I{Ca,L} to identify which modifications eliminate EADs while preserving a normal Ca{i} transient (Aim 2a). Using this information, we will explore genetic modifications of I{Ca,L} in rabbit ventricular myocytes to identify interventions which suppress EADs without adversely affecting E-C coupling, using two strategies: i) genetic overexpression of ancillary Ca channel subunits to replace the corresponding native Ca channel subunits. ii) downregulation of native Ca channel subunits in the adult rabbit ventricular myocytes using appropriate viral vectors. These hybrid modeling/experimental studies promise to both advance our understanding of the mechanisms of EAD formation and identify novel antiarrhythmic strategies. Project 4 will be complemented by the modeling studies in Project 1, cellular level studies in P2, and tissue level studies in Project 3.

Public Health Relevance

Every year in the United States, 300,000 men and women succumb to sudden cardiac death due to ventricular arrhythmias. The research proposed will investigate the underlying mechanisms of these lethal arrhythmias and search for hovel therapies.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL078931-08
Application #
8479415
Study Section
Special Emphasis Panel (ZHL1-PPG-S)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
8
Fiscal Year
2013
Total Cost
$284,543
Indirect Cost
$89,276
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Shivkumar, Kalyanam; Ajijola, Olujimi A; Anand, Inder et al. (2016) Clinical neurocardiology defining the value of neuroscience-based cardiovascular therapeutics. J Physiol 594:3911-54
Zhao, Ye; Jiang, Zhaolei; Tsai, Wei-Chung et al. (2016) Ganglionated plexi and ligament of Marshall ablation reduces atrial vulnerability and causes stellate ganglion remodeling in ambulatory dogs. Heart Rhythm 13:2083-90
Tsai, Wei-Chung; Chan, Yi-Hsin; Hsueh, Chia-Hsiang et al. (2016) Small conductance calcium-activated potassium current and the mechanism of atrial arrhythmia in mice with dysfunctional melanocyte-like cells. Heart Rhythm 13:1527-35
Karagueuzian, H S (2016) Synergism between Enhanced Late Inward Currents and Tissue Fibrosis in the Initiation of Spontaneous Ventricular Tachyarrhythmias. J Heart Health 2:
Chinda, Kroekkiat; Tsai, Wei-Chung; Chan, Yi-Hsin et al. (2016) Intermittent left cervical vagal nerve stimulation damages the stellate ganglia and reduces the ventricular rate during sustained atrial fibrillation in ambulatory dogs. Heart Rhythm 13:771-80
Qu, Zhilin; Liu, Michael B; Nivala, Michael (2016) A unified theory of calcium alternans in ventricular myocytes. Sci Rep 6:35625
Song, Zhen; Karma, Alain; Weiss, James N et al. (2016) Long-Lasting Sparks: Multi-Metastability and Release Competition in the Calcium Release Unit Network. PLoS Comput Biol 12:e1004671
Savalli, Nicoletta; Pantazis, Antonios; Sigg, Daniel et al. (2016) The α2δ-1 subunit remodels CaV1.2 voltage sensors and allows Ca2+ influx at physiological membrane potentials. J Gen Physiol 148:147-59
Yu, Chih-Chieh; Ko, Jum-Suk; Ai, Tomohiko et al. (2016) Arrhythmogenic calmodulin mutations impede activation of small-conductance calcium-activated potassium current. Heart Rhythm 13:1716-23
Weiss, James N; Qu, Zhilin; Shivkumar, Kalyanam (2016) Ablating atrial fibrillation: A translational science perspective for clinicians. Heart Rhythm 13:1868-77

Showing the most recent 10 out of 242 publications