Ca2+ plays a pivotal role in both excitation contraction-coupling (ECC) and activation of signaling pathways in the myocardium. However, it remains a mystery how Ca2+-dependent signaling pathways are activated in myocytes given the overwhelming cytosolic Ca2+ concentrations that are achieved to mediate contraction. One possibility is that specialized pools of Ca2+ have evolved that are spatially distinct from the cytoplasmic Ca2+ transient thereby generating a restricted signaling microdomain. Another possibility that will explored here is that global changes in diastolic Ca2+ Is a primary means of driving the cardiac hypertrophic response and ensuing heart failure, such as through calcineurin-NFAT signaling. Moreover, heart failure is often associated with elevations in total intracellular Na+ levels in adult myocytes. This elevation in Na* can secondarily drive Ca2+ elevations through effects on NCX1. Here we will examine the hypothesis that elevations in Na+ can enhance the cardiac hypertrophic response and disease by secondarily enhancing diastolic Ca2+ levels. To examine this hypothesis in Specific Aim#1 we will generate transgenic mice with enhanced Na* influx, while in Specific Aim #2 we will generate and analyze transgenic and gene-targeted that are manipulated for NCX1 and NKA (Na+ /K+ ATPase). When coupled with careful measurements of intracellular Na and Ca2+ , these first 2 aims will determine if and how diastolic Ca2+ programs hypertrophy through calcineurin-NFAT signaling in the heart. Finally, Specific Aim #3 will investigate the role that the mitochondrial permeability transition pore (MPTP) plays in regulating mitochondrial Ca2+ and propensity toward cardiomyopathy.

Public Health Relevance

of this application is rooted in the fundamental issue of how Ca2+ signaling pathways are controlled in the heart, which is of major medical importance considering the centrality that PKCs, CaMKll, and calcineurin play in controlling pathologic remodeling and heart failure. A better understanding of how Ca2+ regulates both contraction and signaling in a contractile cell, such as a cardiac myocyte, could reveal microdomain regulatory mechanisms that control hypertrophy.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL080101-08
Application #
8496855
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
8
Fiscal Year
2013
Total Cost
$386,834
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Hoeker, Gregory S; Hanafy, Mohamed A; Oster, Robert A et al. (2016) Reduced Arrhythmia Inducibility With Calcium/Calmodulin-dependent Protein Kinase II Inhibition in Heart Failure Rabbits. J Cardiovasc Pharmacol 67:260-5
Panama, Brian K; Korogyi, Adam S; Aschar-Sobbi, Roozbeh et al. (2016) Reductions in the Cardiac Transient Outward K+ Current Ito Caused by Chronic β-Adrenergic Receptor Stimulation Are Partly Rescued by Inhibition of Nuclear Factor κB. J Biol Chem 291:4156-65
Lu, Xiyuan; Kwong, Jennifer Q; Molkentin, Jeffery D et al. (2016) Individual Cardiac Mitochondria Undergo Rare Transient Permeability Transition Pore Openings. Circ Res 118:834-41
Uchinoumi, Hitoshi; Yang, Yi; Oda, Tetsuro et al. (2016) CaMKII-dependent phosphorylation of RyR2 promotes targetable pathological RyR2 conformational shift. J Mol Cell Cardiol 98:62-72
Kanaporis, Giedrius; Blatter, Lothar A (2016) Calcium-activated chloride current determines action potential morphology during calcium alternans in atrial myocytes. J Physiol 594:699-714
Miyamoto, Shigeki; Brown, Joan Heller (2016) Drp1 and Mitochondrial Autophagy Lend a Helping Hand in Adaptation to Pressure Overload. Circulation 133:1225-7
Bossuyt, Julie; Bers, Donald M (2015) Assessing GPCR and G protein signaling to the nucleus in live cells using fluorescent biosensors. Methods Mol Biol 1234:149-59
Grimm, Michael; Ling, Haiyun; Willeford, Andrew et al. (2015) CaMKIIδ mediates β-adrenergic effects on RyR2 phosphorylation and SR Ca(2+) leak and the pathophysiological response to chronic β-adrenergic stimulation. J Mol Cell Cardiol 85:282-91
Hohendanner, Felix; Maxwell, Joshua T; Blatter, Lothar A (2015) Cytosolic and nuclear calcium signaling in atrial myocytes: IP3-mediated calcium release and the role of mitochondria. Channels (Austin) 9:129-38
Erickson, Jeffrey R; Nichols, C Blake; Uchinoumi, Hitoshi et al. (2015) S-Nitrosylation Induces Both Autonomous Activation and Inhibition of Calcium/Calmodulin-dependent Protein Kinase II δ. J Biol Chem 290:25646-56

Showing the most recent 10 out of 194 publications