Ca2+ plays a pivotal role in both excitation contraction-coupling (ECC) and activation of signaling pathways in the myocardium. However, it remains a mystery how Ca2+-dependent signaling pathways are activated in myocytes given the overwhelming cytosolic Ca2+ concentrations that are achieved to mediate contraction. One possibility is that specialized pools of Ca2+ have evolved that are spatially distinct from the cytoplasmic Ca2+ transient thereby generating a restricted signaling microdomain. Another possibility that will explored here is that global changes in diastolic Ca2+ Is a primary means of driving the cardiac hypertrophic response and ensuing heart failure, such as through calcineurin-NFAT signaling. Moreover, heart failure is often associated with elevations in total intracellular Na+ levels in adult myocytes. This elevation in Na* can secondarily drive Ca2+ elevations through effects on NCX1. Here we will examine the hypothesis that elevations in Na+ can enhance the cardiac hypertrophic response and disease by secondarily enhancing diastolic Ca2+ levels. To examine this hypothesis in Specific Aim#1 we will generate transgenic mice with enhanced Na* influx, while in Specific Aim #2 we will generate and analyze transgenic and gene-targeted that are manipulated for NCX1 and NKA (Na+ /K+ ATPase). When coupled with careful measurements of intracellular Na and Ca2+ , these first 2 aims will determine if and how diastolic Ca2+ programs hypertrophy through calcineurin-NFAT signaling in the heart. Finally, Specific Aim #3 will investigate the role that the mitochondrial permeability transition pore (MPTP) plays in regulating mitochondrial Ca2+ and propensity toward cardiomyopathy.

Public Health Relevance

of this application is rooted in the fundamental issue of how Ca2+ signaling pathways are controlled in the heart, which is of major medical importance considering the centrality that PKCs, CaMKll, and calcineurin play in controlling pathologic remodeling and heart failure. A better understanding of how Ca2+ regulates both contraction and signaling in a contractile cell, such as a cardiac myocyte, could reveal microdomain regulatory mechanisms that control hypertrophy.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Davis
United States
Zip Code
Ljubojevic, Senka; Bers, Donald M (2015) Nuclear calcium in cardiac myocytes. J Cardiovasc Pharmacol 65:211-7
Bers, Donald M (2014) Cardiac sarcoplasmic reticulum calcium leak: basis and roles in cardiac dysfunction. Annu Rev Physiol 76:107-27
Xie, Yuanfang; Grandi, Eleonora; Bers, Donald M et al. (2014) How does ?-adrenergic signalling affect the transitions from ventricular tachycardia to ventricular fibrillation? Europace 16:452-7
Correll, Robert N; Eder, Petra; Burr, Adam R et al. (2014) Overexpression of the Na+/K+ ATPase ?2 but not ?1 isoform attenuates pathological cardiac hypertrophy and remodeling. Circ Res 114:249-56
Myles, Rachel C; Wang, Lianguo; Bers, Donald M et al. (2014) Decreased inward rectifying K+ current and increased ryanodine receptor sensitivity synergistically contribute to sustained focal arrhythmia in the intact rabbit heart. J Physiol :
Sankar, Natesan; deTombe, Pieter P; Mignery, Gregory A (2014) Calcineurin-NFATc regulates type 2 inositol 1,4,5-trisphosphate receptor (InsP3R2) expression during cardiac remodeling. J Biol Chem 289:6188-98
Walther, Stefanie; Pluteanu, Florentina; Renz, Susanne et al. (2014) Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt- and PKA-mediated phosphorylation of eNOS at serine 1177. Am J Physiol Heart Circ Physiol 307:H689-700
Zhang, Dai-Min; Chai, Yongping; Erickson, Jeffrey R et al. (2014) Intracellular signalling mechanism responsible for modulation of sarcolemmal ATP-sensitive potassium channels by nitric oxide in ventricular cardiomyocytes. J Physiol 592:971-90
Kapoor, Nidhi; Maxwell, Joshua T; Mignery, Gregory A et al. (2014) Spatially defined InsP3-mediated signaling in embryonic stem cell-derived cardiomyocytes. PLoS One 9:e83715
Morotti, S; Edwards, A G; McCulloch, A D et al. (2014) A novel computational model of mouse myocyte electrophysiology to assess the synergy between Na+ loading and CaMKII. J Physiol 592:1181-97

Showing the most recent 10 out of 125 publications