Vascular endothelial function is a critical determinant of cardiovascular risk in obesity. We have recently shown that a proinflammatory fat phenotype is coupled with insulin resistance and vascular dysfunction. While shared inflammatory mechanisms underlie both atherosclerosis and adipose remodeling, little is known about the adverse vascular consequences of adipose inflammation or how this relationship is modulated by large-scale weight loss.
In aim 1, we propose to characterize the relationship between adipose tissue phenotype and local microvascular function in fat. In 200 obese individuals, we will biopsy fat depots during bariatric surgery and assess depot-speciflc inflammatory activity by quantifying adipocytokine expression, macrophage density, macrophage polarization (M1/M2) using immunohistochemistry, flowcytometry, and rt-PCR. These findings will be related to endothelial vasodilator function of small arterioles isolated from adipose tissue. We hypothesize that blood vessels from more inflamed fat will exhibit a proatherogenic profile.
In aim 2, we will determine whether microvascular function in fat correlates with systemic vascular function by examining brachial artery flow-mediated dilation and reactive hyperemia prior to bariatric surgery in all subjects from aim 1. We will relate these measures of systemic macro- and microvascular function to vascular phenotype and inflammation in adipose tissue. We hypothesize that arterial dysfunction in fat will be associated with a generalized systemic state of vascular impairment.
In aim 3, we propose to determine the effects of extensive weight loss following bariatric surgery on adipose phenotype and local and systemic vascular function. We will repeat vascular studies and biopsy subcutaneous fat at 3 months and 1-year after bariatric surgery in the same 200 subjects. We hypothesize that weight reduction will improve vascular health and that reduced inflammatory burden will relate more closely to arterial phenotype than the magnitude of weight loss. The proposed studies are likely to yield novel and important information about the mechanisms of obesity-induced cardiovascular disease in a group of very obese subjects (BMI S35 kg/m2) where very limited cardiovascular data are currently available.

Public Health Relevance

Obesity has emerged as the most critical health care problem in the US. Currently over 65% of adults in the US are overweight and the prevalence of severe obesity has more than tripled in the last decade with no signs of slowing. Cardiovascular disease is the leading cause of death in this populafion and this project seeks to investigate mechanisms of obesity-related vascular disease as an area of high priority research.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL081587-07
Application #
8376512
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2012-03-01
Budget End
2013-02-28
Support Year
7
Fiscal Year
2012
Total Cost
$525,622
Indirect Cost
$189,461
Name
Boston University
Department
Type
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02118
Farb, Melissa G; Park, Song-Young; Karki, Shakun et al. (2017) Assessment of Human Adipose Tissue Microvascular Function Using Videomicroscopy. J Vis Exp :
Widlansky, Michael E; Puppala, Venkata K; Suboc, Tisha M et al. (2017) Impact of DPP-4 inhibition on acute and chronic endothelial function in humans with type 2 diabetes on background metformin therapy. Vasc Med 22:189-196
Brant, Luisa C C; Wang, Na; Ojeda, Francisco M et al. (2017) Relations of Metabolically Healthy and Unhealthy Obesity to Digital Vascular Function in Three Community-Based Cohorts: A Meta-Analysis. J Am Heart Assoc 6:
Karki, Shakun; Ngo, Doan T M; Farb, Melissa G et al. (2017) WNT5A regulates adipose tissue angiogenesis via antiangiogenic VEGF-A165b in obese humans. Am J Physiol Heart Circ Physiol 313:H200-H206
Bretón-Romero, Rosa; Wang, Na; Palmisano, Joseph et al. (2016) Cross-Sectional Associations of Flow Reversal, Vascular Function, and Arterial Stiffness in the Framingham Heart Study. Arterioscler Thromb Vasc Biol 36:2452-2459
Farb, Melissa G; Karki, Shakun; Park, Song-Young et al. (2016) WNT5A-JNK regulation of vascular insulin resistance in human obesity. Vasc Med 21:489-496
Fuster, José J; Ouchi, Noriyuki; Gokce, Noyan et al. (2016) Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circ Res 118:1786-807
Fetterman, Jessica L; Holbrook, Monica; Flint, Nir et al. (2016) Restoration of autophagy in endothelial cells from patients with diabetes mellitus improves nitric oxide signaling. Atherosclerosis 247:207-17
Cooper, Leroy L; Palmisano, Joseph N; Benjamin, Emelia J et al. (2016) Microvascular Function Contributes to the Relation Between Aortic Stiffness and Cardiovascular Events: The Framingham Heart Study. Circ Cardiovasc Imaging 9:
Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika et al. (2016) Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling. Arterioscler Thromb Vasc Biol 36:561-9

Showing the most recent 10 out of 173 publications