It is widely recognized that the endothelium is affected by the metabolic state of the organism, and endothelial function can also influence systemic metabolism. This program project renewal application brings together five productive project leaders who have a long history of collaboration to investigate mechanisms that underlie how the endothelium is both affected by and contributes to metabolic homeostasis. Project 1 will examine the mechanism by which endothelial cells switch from aerobic respiration to anaerobic glycolysis under conditions that stimulate vascular growth (i.e. hypoxia and pseudo-hypoxia) by focusing on a HIF1a-regulated microRNA that regulates the expression of mitochondrial respiratory complex proteins. Project 2 will examine mechanisms of redox regulation of cell signaling in vascular function and how these processes are perturbed by endothelial cell exposure to oxidants and reactive lipids that are associated with inflammation and metabolic disease. Project 3 will examine the functional interplay between endothelial function and inflammation in adipose tissue and assess how these processes influence systemic metabolism by focusing on mouse models that over- and under-express the adipocyte-derived cytokine adiponectin. Project 4 will also examine the interrelationship between the endothelium and inflammation in fat by measuring microvascular function and inflammatory markers in the fat of obese individuals before and after extensive weight loss resulting from bariatric surgery. Project 5 will examine the role of mitochondrial homeostasis in endothelial and inflammatory cells isolated from patients with Type 2 diabetes mellitus. This conceptually cohesive program focuses on an under-explored, yet clinically important, area of endothelial cell biology. With these proposed studies, we hope develop a better understanding of how endothelium functions at the interface of cardiovascular disease and metabolic dysfunction.

Public Health Relevance

Obesity and diabetes have a devastating impact on how blood vessels function, leading to the development of cardiovascular diseases. This program project grant invloves research from 5 laboratories that will study how metabolic disease interrelates to vascular disease. These studies will be conducted in cultured cells, genetically-engineered mice and in patient populations.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL081587-08
Application #
8438330
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Ershow, Abby
Project Start
2005-09-30
Project End
2016-02-29
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
8
Fiscal Year
2013
Total Cost
$1,908,101
Indirect Cost
$708,171
Name
Boston University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02118
Fuster, José J; Zuriaga, María A; Ngo, Doan Thi-Minh et al. (2015) Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion. Diabetes 64:1235-48
Romero, Freddy; Shah, Dilip; Duong, Michelle et al. (2015) A pneumocyte-macrophage paracrine lipid axis drives the lung toward fibrosis. Am J Respir Cell Mol Biol 53:74-86
Kikuchi, Ryosuke; Nakamura, Kazuto; MacLauchlan, Susan et al. (2014) An antiangiogenic isoform of VEGF-A contributes to impaired vascularization in peripheral artery disease. Nat Med 20:1464-71
Ngo, Doan T M; Farb, Melissa G; Kikuchi, Ryosuke et al. (2014) Antiangiogenic actions of vascular endothelial growth factor-A165b, an inhibitory isoform of vascular endothelial growth factor-A, in human obesity. Circulation 130:1072-80
Tan, Peng H; Tyrrell, Helen E J; Gao, Liquan et al. (2014) Adiponectin receptor signaling on dendritic cells blunts antitumor immunity. Cancer Res 74:5711-22
Hartman, Mor-Li; Shirihai, Orian S; Holbrook, Monika et al. (2014) Relation of mitochondrial oxygen consumption in peripheral blood mononuclear cells to vascular function in type 2 diabetes mellitus. Vasc Med 19:67-74
Nakamura, Kazuto; Fuster, José J; Walsh, Kenneth (2014) Adipokines: a link between obesity and cardiovascular disease. J Cardiol 63:250-9
Shimizu, Ippei; Aprahamian, Tamar; Kikuchi, Ryosuke et al. (2014) Vascular rarefaction mediates whitening of brown fat in obesity. J Clin Invest 124:2099-112
Yoshida, Sumiko; Fuster, José Javier; Walsh, Kenneth (2014) Adiponectin attenuates abdominal aortic aneurysm formation in hyperlipidemic mice. Atherosclerosis 235:339-46
Parker-Duffen, Jennifer L; Walsh, Kenneth (2014) Cardiometabolic effects of adiponectin. Best Pract Res Clin Endocrinol Metab 28:81-91

Showing the most recent 10 out of 132 publications