The goal of this PPG is to advance our understanding ofthe complex regulation and interplay of a set of genes residing in two different regions of chr 13 but which together are responsible, in large measure, for salt-induced hypertension, renal injury, and vascularity/angiogenesis of the microcirculation in the saltsensitive (SS) rat. The studies are collectively designed to explore how genetic polymorphisms are translated into integrated cellular, tissue, organ and whole animal function. Project 1 hypothesizes that sequence variants of one or more ofthe genes within a congenic region of chr 13 alter molecular regulatory networks affecting function of the medullary thick ascending limb (mTAL) of SS rats and contribute to the development of salt-sensitive hypertension and renal injury. This will tested by: 1) generating finished-level genomic sequence with complete annotation of this congenic region;2) by constructing a molecular and physiological regulatory network of the mTAL epithelial cell and identifying pathways and genes that may contribute to hypertension and renal injury;and 3) by studying the impact of removing or overexpressing an important gene in the transcriptome/proteome/metabolome associated network. Project 2 will examine a novel hypothesis that non-protein-coding genes may play important roles in hypertension and related tissue injury. We hypothesize that miR-214 contributes to the development of salt-sensitive hypertension and renal injury and examine: 1) the functional contribution of the microRNA within the kidney;2) examine downstream mechanisms mediating its effects, examine upstream trans and cis mechanisms;and 3) carry out a pilot study of miR-214 in human salt-sensitive hypertension and renal injury. Project 3 hypothesizes that a mutation(s) in the SS rat is responsible forthe impaired angiogenesis in this model. We will: 1) identify sequence variants;2) demonstrate that these variants impact renin regulation in vitro;and 3) using a transgenic approach, demonstrate that the SS allele is capable of eliminating normal renin regulation and the angiogenic phenotype in vivo. The collaborative research of this PPG will be supported by Administrative Core A, Genomic and Transgenic Core B, and the Research Services Core C.

Public Health Relevance

More than 50 million Americans have essential hypertension with salt-sensitivity a prominent feature in certain populations of hypertensive patients such as African Americans who also exhibit significantly higher risk of end organ renal damage. This grant will explore the genetic and physiological basis of this form of hypertension to reveal new therapeutic targets for the treatment of this disease.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Program Officer
OH, Youngsuk
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Medical College of Wisconsin
Schools of Medicine
United States
Zip Code
Evans, Louise C; Ryan, Robert P; Broadway, Elizabeth et al. (2015) Null mutation of the nicotinamide adenine dinucleotide phosphate-oxidase subunit p67phox protects the Dahl-S rat from salt-induced reductions in medullary blood flow and glomerular filtration rate. Hypertension 65:561-8
Geurts, Aron M; Mattson, David L; Liu, Pengyuan et al. (2015) Maternal diet during gestation and lactation modifies the severity of salt-induced hypertension and renal injury in Dahl salt-sensitive rats. Hypertension 65:447-55
He, Xiaofeng; Liu, Yong; Usa, Kristie et al. (2014) Ultrastructure of mitochondria and the endoplasmic reticulum in renal tubules of Dahl salt-sensitive rats. Am J Physiol Renal Physiol 306:F1190-7
Cowley Jr, Allen W; Moreno, Carol; Jacob, Howard J et al. (2014) Characterization of biological pathways associated with a 1.37 Mbp genomic region protective of hypertension in Dahl S rats. Physiol Genomics 46:398-410
Prisco, Anthony R; Bukowy, John D; Hoffmann, Brian R et al. (2014) Automated quantification reveals hyperglycemia inhibits endothelial angiogenic function. PLoS One 9:e94599
Karcher, Jamie R; Greene, Andrew S (2014) Bone marrow mononuclear cell angiogenic competency is suppressed by a high-salt diet. Am J Physiol Cell Physiol 306:C123-31
Liu, Yong; Liu, Pengyuan; Yang, Chun et al. (2014) Base-resolution maps of 5-methylcytosine and 5-hydroxymethylcytosine in Dahl S rats: effect of salt and genomic sequence. Hypertension 63:827-38
Xu, Xialian; Kriegel, Alison J; Jiao, Xiaoyan et al. (2014) miR-21 in ischemia/reperfusion injury: a double-edged sword? Physiol Genomics 46:789-97
Yang, Chun; Stingo, Francesco C; Ahn, Kwang Woo et al. (2013) Increased proliferative cells in the medullary thick ascending limb of the loop of Henle in the Dahl salt-sensitive rat. Hypertension 61:208-15
Jia, Ping; Teng, Jie; Zou, Jianzhou et al. (2013) miR-21 contributes to xenon-conferred amelioration of renal ischemia-reperfusion injury in mice. Anesthesiology 119:621-30

Showing the most recent 10 out of 54 publications