The purpose of the mouse genetics core is to provide centralized breeding, genotyping and quality control of transgenic and knockout animals for use by investigators in the program project. In addition, the core will generate new transgenic mouse models needed by Project 2. The core will also provide a mechanism for distribution of new experimental transgenic models to either a national repository (such as the Jackson Laboratory Induced Mutant Resource), as described in our sharing plan, or to other investigators at the University of lowa, Weill Cornell Medical College and outside of either institution. The main responsibilities of the Core will be: a) maintenance of genetic stocks, b) breeding and genotyping transgenic and knockout animals, c) generation of transgenic mice, d) provision of experimental and control mice to investigators, e) unified institutional accreditation for animal use, f) quality control. All the projects in this program will make extensive use of genetically manipulated mice as the primary experimental platform. A comprehensive list of these strains is provided the core narrative. The models were either made by investigators at lowa or WCMC, were obtained from a National Repository (i.e. the Jackson Laboratory), or were obtained from collaborators and consultants. The mouse genetics core will be used to centralize the maintenance of genetic stocks of transgenic and knockout mice used by investigators in the program. The core director will oversee the animal care staff in the setup of all breeding and will be responsible for the maintenance of genetic purity and quality control. The genotyping of animals is one of the primary responsibilities of the Core. Genotyping will be performed for the purposes of: a) identifying heterozygotes from wild type among germline transmission mice, b) identifying transgenic founders and offspring, c) identifying complete models generated by crossbreeding models , d) foundation and production colonies backcrossed onto C57BL/6, and e) quality control.

Public Health Relevance

Core C mission is to facilitate research carried out by the entire PPG and to accelerate discovery by providing a seamless pipeline for the development, acquisition and genotyping of simple and complex mouse models.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL084207-07
Application #
8651941
Study Section
Special Emphasis Panel (ZHL1-PPG-J)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
7
Fiscal Year
2014
Total Cost
$150,746
Indirect Cost
$50,914
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Sandgren, Jeremy A; Linggonegoro, Danny W; Zhang, Shao Yang et al. (2018) Angiotensin AT1A receptors expressed in vasopressin-producing cells of the supraoptic nucleus contribute to osmotic control of vasopressin. Am J Physiol Regul Integr Comp Physiol 314:R770-R780
Pellegrinelli, Vanessa; Peirce, Vivian J; Howard, Laura et al. (2018) Adipocyte-secreted BMP8b mediates adrenergic-induced remodeling of the neuro-vascular network in adipose tissue. Nat Commun 9:4974
Peng, Hua; Jensen, Dane D; Li, Wencheng et al. (2018) Overexpression of the neuronal human (pro)renin receptor mediates angiotensin II-independent blood pressure regulation in the central nervous system. Am J Physiol Heart Circ Physiol 314:H580-H592
Bell, Balyssa B; Harlan, Shannon M; Morgan, Donald A et al. (2018) Differential contribution of POMC and AgRP neurons to the regulation of regional autonomic nerve activity by leptin. Mol Metab 8:1-12
Sandgren, Jeremy A; Deng, Guorui; Linggonegoro, Danny W et al. (2018) Arginine vasopressin infusion is sufficient to model clinical features of preeclampsia in mice. JCI Insight 3:
Yoon, Young-Sil; Tsai, Wen-Wei; Van de Velde, Sam et al. (2018) cAMP-inducible coactivator CRTC3 attenuates brown adipose tissue thermogenesis. Proc Natl Acad Sci U S A 115:E5289-E5297
Imai, Yumi; Fink, Brian D; Promes, Joseph A et al. (2018) Effect of a mitochondrial-targeted coenzyme Q analog on pancreatic ?-cell function and energetics in high fat fed obese mice. Pharmacol Res Perspect 6:e00393
Morselli, Lisa L; Claflin, Kristin E; Cui, Huxing et al. (2018) Control of Energy Expenditure by AgRP Neurons of the Arcuate Nucleus: Neurocircuitry, Signaling Pathways, and Angiotensin. Curr Hypertens Rep 20:25
Nair, Anand R; Agbor, Larry N; Mukohda, Masashi et al. (2018) Interference With Endothelial PPAR (Peroxisome Proliferator-Activated Receptor)-? Causes Accelerated Cerebral Vascular Dysfunction in Response to Endogenous Renin-Angiotensin System Activation. Hypertension 72:1227-1235
Seoane-Collazo, Patricia; Roa, Juan; Rial-Pensado, Eva et al. (2018) SF1-Specific AMPK?1 Deletion Protects Against Diet-Induced Obesity. Diabetes 67:2213-2226

Showing the most recent 10 out of 202 publications