The Physiology / Surgery Core (PSC;Core C), used by all of the Projects of this PPG, will offer integrated services for assessing heart function and structure in settings that mimic cardiac pathology in mice. Accordingly, Core C will maintain equipment and provide staffing to offer Projects the following services: 1) Physiology: echocardiography, invasive hemodynamics, isolated working heart preparation, and 2) Surgery: in vivo myocardial infarction, reperfusion, transaortic constriction, and intramyocardial adoptive transfer cell injection. The PSC is centrally located in the SDSU BioScience Center, which houses the SDSU Heart Institute labs and administrative offices. The PSC is composed of fully equipped surgery and physiology suites and dedicated mouse holding rooms. PPG investigators both institutions will be able to fully utilize PSC resources with "on demand" availability of two part-time trained cardiac surgeons, a physiology technician, and a mouse husbandry specialist. All required equipment including a Visualsonics Vevo 770 and Scisense hemodynamic assessment package are in place and operational in the PSC. The PSC is under the direction of Dr. Mark Sussman, who has a legacy of publications in the techniques offered by core and is well versed in administration of such services for Program participants. Dr. Glembotski brings his decades of experience in mouse physiology and surgery as co-Director of the PSC. An additional advantage of the PSC is that it adjoins the SDSU Heart Institute Mouse Genetics Center, which facilitates the generation and use of genetically modified mice by Projects. The PSC was designed specifically to serve this multi-institutional PPG;accordingly, it will maximize collaborations between projects, thus enhancing the synergy of this integrated research program. The PSC complements and integrates with the Cell Biology / Histology Core (CBHC) by serving as the location where principles discovered using cells generated with cells from the CBHC will be assessed in a pathophysiological in vivo context that mimics cardiomyopathic conditions. The PSC will be equally used by all four Projects of the Program

Public Health Relevance

The Program is designed to assess mechanisms to restore myocardial healing in the damaged heart, which can only be property tested with an in vivo model system that allows for creation of pathophysiological damage that mimics the human disease conditions of hypertrophy and infarction. This core facility provides both the capabilities to create such models in mice and then evaluate the ability of the heart to recover.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
San Diego State University
San Diego
United States
Zip Code
Khan, Mohsin; Mohsin, Sadia; Toko, Haruhiro et al. (2014) Cardiac progenitor cells engineered with *ARKct have enhanced *-adrenergic tolerance. Mol Ther 22:178-85
Siddiqi, Sailay; Sussman, Mark A (2014) The heart: mostly postmitotic or mostly premitotic? Myocyte cell cycle, senescence, and quiescence. Can J Cardiol 30:1270-8
Hammerling, Babette C; Gustafsson, Åsa B (2014) Mitochondrial quality control in the myocardium: cooperation between protein degradation and mitophagy. J Mol Cell Cardiol 75:122-30
Kubli, Dieter A; Gustafsson, Asa B (2014) Cardiomyocyte health: adapting to metabolic changes through autophagy. Trends Endocrinol Metab 25:156-64
Mohsin, Sadia; Wu, Joseph C; Sussman, Mark A (2014) Predicting the future with stem cells. Circulation 129:136-8
Hariharan, Nirmala; Sussman, Mark A (2014) Stressing on the nucleolus in cardiovascular disease. Biochim Biophys Acta 1842:798-801
Völkers, Mirko; Doroudgar, Shirin; Nguyen, Nathalie et al. (2014) PRAS40 prevents development of diabetic cardiomyopathy and improves hepatic insulin sensitivity in obesity. EMBO Mol Med 6:57-65
Anderson, Mark E; Goldhaber, Joshua; Houser, Steven R et al. (2014) Embryonic stem cell-derived cardiac myocytes are not ready for human trials. Circ Res 115:335-8
Quijada, Pearl; Sussman, Mark A (2014) Making it stick: chasing the optimal stem cells for cardiac regeneration. Expert Rev Cardiovasc Ther 12:1275-88
Hariharan, Nirmala; Sussman, Mark A (2014) Pin1: a molecular orchestrator in the heart. Trends Cardiovasc Med 24:256-62

Showing the most recent 10 out of 76 publications