Two factors contributing to the increased risk of coronary artery disease (CAD) in obesity/insulin resistance are death of macrophages (Mfs) in advanced atherosclerosis, which promotes plaque necrosis, and hepatic- derived dyslipidemia. Over the last decade, the Pi's lab has elucidated the mechanisms by which endoplasmic reticulum (ER) stress and Mf insulin resistance promote advanced lesional Mf death and plaque necrosis by complementary mechanisms. A recent key concept revealed by our mechanistic studies, and awaiting in vivo testing, is that prolonged ER stress triggers apoptosis through activation of the calcium- activated enzyme, calcium/calmodulin-dependent protein kinase ll-g (CaMKIIg). We also found that deletion or inhibition of hepatic CaMKIIg in obese mice protected against metabolic disturbances, including dyslipidemia. Thus, one enzyme may have critical effects on two complementary processes that promote CAD in insulin resistant subjects. Thus, the goals of this project are to test the hypotheses that Mf CaMKIIg deficiency will lessen advanced lesional Mf apoptosis and plaque necrosis in a murine model of Mf insulin resistance (Aim 1) and that hepatic CaMKIIg deficiency will improve atherogenic metabolic disturbances in insulin resistant obese mice (Aim 2).
In Aim 1, we will determine whether silencing of CaMKIIg in insulin resistant Mfs will suppress the high level of ER stress-induced apoptosis in these cells, followed by further exploration of the mechanisms of protection. We will also test the hypothesis that p-CaMKII, a measure of CaMKII activation, is higher in lesional Mfs in advanced vs. eariier stage human and murine atherosclerotic lesions. Most importantly, we will use a unique mouse model to test the hypothesis that the high level of advanced lesional Mf apoptosis and plaque necrosis in insulin resistant mice will be decreased by Mf- targeted CaMKII deficiency.
In Aim 2, we will characterize and explore the mechanisms whereby liver CaMKIIg deficiency in obesity improves the liver-derived metabolic disturbances, including dyslipidemia, and then use a unique model of liver-targeted CaMKIIg deficiency to test causation in vivo. We will complete the link with Aim 1 by testing the hypothesis that combined hepatic and Mf CaMKIIg deficiency will have a marked beneficial effect on all stages of atherosclerosis in insulin resistant mice. At the end of these studies, we hope to have comprehensive data to identify CaMKIIg as a prime, dual-action therapeutic target to prevent CAD in the setting of obesity and insulin resistance.

Public Health Relevance

Obesity and insulin resistance (IR) are major drivers of CAD. The Mf studies are focused on plaque necrosis, a critical feature of dangerous human plaques and one which is increased in human IR. The liver studies focus on the most important systemic CAD risk factors for humans with IR. The project includes preliminary data and proposed studies using human plaque and liver specimens. The work should suggest new therapeutic strategies that target common pro-atherogenic pathways in the arterial wall and liver in IR subjects.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL087123-06A1
Application #
8460252
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
6
Fiscal Year
2013
Total Cost
$543,351
Indirect Cost
$203,757
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Westerterp, Marit; Wang, Nan; Tall, Alan R (2016) High-Density Lipoproteins, Endothelial Function, and Mendelian Randomization. Circ Res 119:13-5
Cochran, Blake J; Hou, Liming; Manavalan, Anil Paul Chirackal et al. (2016) Impact of Perturbed Pancreatic β-Cell Cholesterol Homeostasis on Adipose Tissue and Skeletal Muscle Metabolism. Diabetes 65:3610-3620
Tabas, Ira (2016) Heart disease: Death-defying plaque cells. Nature 536:32-3
Hsieh, Joanne; Koseki, Masahiro; Molusky, Matthew M et al. (2016) TTC39B deficiency stabilizes LXR reducing both atherosclerosis and steatohepatitis. Nature 535:303-7
Ozcan, L; Tabas, I (2016) Calcium signalling and ER stress in insulin resistance and atherosclerosis. J Intern Med 280:457-464
Kim-Muller, Ja Young; Kim, Young Jung R; Fan, Jason et al. (2016) FoxO1 Deacetylation Decreases Fatty Acid Oxidation in β-Cells and Sustains Insulin Secretion in Diabetes. J Biol Chem 291:10162-72
Ozcan, Lale; Ghorpade, Devram S; Zheng, Ze et al. (2016) Hepatocyte DACH1 Is Increased in Obesity via Nuclear Exclusion of HDAC4 and Promotes Hepatic Insulin Resistance. Cell Rep 15:2214-25
Fredman, Gabrielle; Hellmann, Jason; Proto, Jonathan D et al. (2016) An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat Commun 7:12859
Libby, Peter; Bornfeldt, Karin E; Tall, Alan R (2016) Atherosclerosis: Successes, Surprises, and Future Challenges. Circ Res 118:531-4
Westerterp, Marit; Tsuchiya, Kyoichiro; Tattersall, Ian W et al. (2016) Deficiency of ATP-Binding Cassette Transporters A1 and G1 in Endothelial Cells Accelerates Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol 36:1328-37

Showing the most recent 10 out of 81 publications