Two factors contributing to the increased risk of coronary artery disease (CAD) in obesity/insulin resistance are death of macrophages (Mfs) in advanced atherosclerosis, which promotes plaque necrosis, and hepatic- derived dyslipidemia. Over the last decade, the Pi's lab has elucidated the mechanisms by which endoplasmic reticulum (ER) stress and Mf insulin resistance promote advanced lesional Mf death and plaque necrosis by complementary mechanisms. A recent key concept revealed by our mechanistic studies, and awaiting in vivo testing, is that prolonged ER stress triggers apoptosis through activation of the calcium- activated enzyme, calcium/calmodulin-dependent protein kinase ll-g (CaMKIIg). We also found that deletion or inhibition of hepatic CaMKIIg in obese mice protected against metabolic disturbances, including dyslipidemia. Thus, one enzyme may have critical effects on two complementary processes that promote CAD in insulin resistant subjects. Thus, the goals of this project are to test the hypotheses that Mf CaMKIIg deficiency will lessen advanced lesional Mf apoptosis and plaque necrosis in a murine model of Mf insulin resistance (Aim 1) and that hepatic CaMKIIg deficiency will improve atherogenic metabolic disturbances in insulin resistant obese mice (Aim 2).
In Aim 1, we will determine whether silencing of CaMKIIg in insulin resistant Mfs will suppress the high level of ER stress-induced apoptosis in these cells, followed by further exploration of the mechanisms of protection. We will also test the hypothesis that p-CaMKII, a measure of CaMKII activation, is higher in lesional Mfs in advanced vs. eariier stage human and murine atherosclerotic lesions. Most importantly, we will use a unique mouse model to test the hypothesis that the high level of advanced lesional Mf apoptosis and plaque necrosis in insulin resistant mice will be decreased by Mf- targeted CaMKII deficiency.
In Aim 2, we will characterize and explore the mechanisms whereby liver CaMKIIg deficiency in obesity improves the liver-derived metabolic disturbances, including dyslipidemia, and then use a unique model of liver-targeted CaMKIIg deficiency to test causation in vivo. We will complete the link with Aim 1 by testing the hypothesis that combined hepatic and Mf CaMKIIg deficiency will have a marked beneficial effect on all stages of atherosclerosis in insulin resistant mice. At the end of these studies, we hope to have comprehensive data to identify CaMKIIg as a prime, dual-action therapeutic target to prevent CAD in the setting of obesity and insulin resistance.

Public Health Relevance

Obesity and insulin resistance (IR) are major drivers of CAD. The Mf studies are focused on plaque necrosis, a critical feature of dangerous human plaques and one which is increased in human IR. The liver studies focus on the most important systemic CAD risk factors for humans with IR. The project includes preliminary data and proposed studies using human plaque and liver specimens. The work should suggest new therapeutic strategies that target common pro-atherogenic pathways in the arterial wall and liver in IR subjects.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Columbia University (N.Y.)
New York
United States
Zip Code
Nagareddy, Prabhakara R; Kraakman, Michael; Masters, Seth L et al. (2014) Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metab 19:821-35
Ozcan, Lale; Tabas, Ira (2014) CaMKII in cardiometabolic disease. Aging (Albany NY) 6:430-1
Fredman, Gabrielle; Ozcan, Lale; Tabas, Ira (2014) Common therapeutic targets in cardiometabolic disease. Sci Transl Med 6:239ps5
Ai, Ding; Jiang, Hongfeng; Westerterp, Marit et al. (2014) Disruption of mammalian target of rapamycin complex 1 in macrophages decreases chemokine gene expression and atherosclerosis. Circ Res 114:1576-84
Libby, Peter; Tabas, Ira; Fredman, Gabrielle et al. (2014) Inflammation and its resolution as determinants of acute coronary syndromes. Circ Res 114:1867-79
Richards, M Rachel; Black, Audrey S; Bonnet, David J et al. (2013) The LPS2 mutation in TRIF is atheroprotective in hyperlipidemic low density lipoprotein receptor knockout mice. Innate Immun 19:20-9
Ozcan, Lale; Cristina de Souza, Jane; Harari, Alp Avi et al. (2013) Activation of calcium/calmodulin-dependent protein kinase II in obesity mediates suppression of hepatic insulin signaling. Cell Metab 18:803-15
Nagareddy, Prabhakara R; Murphy, Andrew J; Stirzaker, Roslynn A et al. (2013) Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab 17:695-708
Murphy, Andrew J; Funt, Samuel; Gorman, Darren et al. (2013) Pegylation of high-density lipoprotein decreases plasma clearance and enhances antiatherogenic activity. Circ Res 113:e1-9
Tsuchiya, Kyoichiro; Accili, Domenico (2013) Liver sinusoidal endothelial cells link hyperinsulinemia to hepatic insulin resistance. Diabetes 62:1478-89

Showing the most recent 10 out of 52 publications