The Genomics and Bioinformatics Core will provide resources and technical and bioinformatics support for the application of massively parallel sequencing-based technologies to the understanding of regulated gene expression in macrophages, T cells, B cells and endothelial cells. The Genomics and Bioinformatics Core will thereby enable the acquisition and sophisticated analysis of data generated by ChlP-Seq, RNA-Seq, GRO-Seq and Ribo-Seq experiments. These methods provide extremely powerful approaches to addressing key mechanistic and pathophysiologic questions by each ofthe four projects ofthe PPG.

Public Health Relevance

The ability to globally evaluate gene expression and transcription factor location using massively parallel DNA sequencing approaches provides a relatively unbiased approach to determining functional roles of these factors and upstream signaling pathways in regulation of cellular phenotypes. This information is likely to provide new insights into how specific programs of gene expression in macrophages, T cells, B cells and endothelial cells are altered in atherosclerosis.

Agency
National Institute of Health (NIH)
Type
Research Program Projects (P01)
Project #
2P01HL088093-06A1
Application #
8703255
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
6
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
City
La Jolla
State
CA
Country
United States
Zip Code
92093
van der Valk, Fleur M; Bekkering, Siroon; Kroon, Jeffrey et al. (2016) Oxidized Phospholipids on Lipoprotein(a) Elicit Arterial Wall Inflammation and an Inflammatory Monocyte Response in Humans. Circulation 134:611-24
Zhao, Xuan; Hirota, Tsuyoshi; Han, Xuemei et al. (2016) Circadian Amplitude Regulation via FBXW7-Targeted REV-ERBα Degradation. Cell 165:1644-57
Wang, Junjian; Zou, June X; Xue, Xiaoqian et al. (2016) ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer. Nat Med 22:488-96
Verbeek, Rutger; Boekholdt, S Matthijs; Stoekenbroek, Robert M et al. (2016) Population and assay thresholds for the predictive value of lipoprotein (a) for coronary artery disease: the EPIC-Norfolk Prospective Population Study. J Lipid Res 57:697-705
Yang, Xiaohong; Lee, Sang-Rok; Choi, Yun-Seok et al. (2016) Reduction in lipoprotein-associated apoC-III levels following volanesorsen therapy: phase 2 randomized trial results. J Lipid Res 57:706-13
Gordts, Philip L S M; Nock, Ryan; Son, Ni-Huiping et al. (2016) ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors. J Clin Invest 126:2855-66
Wall, Christopher E; Yu, Ruth T; Atkins, Anne R et al. (2016) Nuclear receptors and AMPK: can exercise mimetics cure diabetes? J Mol Endocrinol 57:R49-58
Liu, Weilin; Struik, Dicky; Nies, Vera J M et al. (2016) Effective treatment of steatosis and steatohepatitis by fibroblast growth factor 1 in mouse models of nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A 113:2288-93
Ley, Klaus (2016) 2015 Russell Ross Memorial Lecture in Vascular Biology: Protective Autoimmunity in Atherosclerosis. Arterioscler Thromb Vasc Biol 36:429-38
Miller, Yury I; Shyy, John Y-J (2016) Context-Dependent Role of Oxidized Lipids and Lipoproteins in Inflammation. Trends Endocrinol Metab :

Showing the most recent 10 out of 113 publications