Airway eosinophilia is an important marker of asthma severity, risk of exacerbation, and response to therapy. Based upon the current understanding of the function of eosinophils (EOS), the preliminary data and studies accomplished over the previous funding cycle, form the basis for the hypothesis that EOS play a pivotal role in asthma pathophysiology by enhancing airway inflammation and remodeling. The studies in this PPG renewal application are designed to answer clinically important questions formulated to take maximum advantage of our collective expertise and resources. They will allow us to address critically, comprehensively and interactively the role of EOS in allergic airway inflammation using ex vivo and in vivo experiments in human subjects complemented, as appropriate, by focused use of cell lines and animal models. Project 1 will investigate key EOS functions including promoting IL-17 responses and enhancing fibroblast (Fb) function via expression of SEMA7A, which leads to promoting myoFb differentiation and generation of extracellular matrix (ECM) components. The Th2 skewed environment in the asthmatic airway promotes the expression of periostin, an important marker of allergic inflammation. The proposed studies in Project 2 will determine how this ECM protein interacts with EOS to enhance their survival, mediator release, and response to EOS-active cytokines. Studies will define the requirements for periostin generation in the airway and recognition by the EOS integrin alphaMBeta2. Finally in Project 3, the molecular mechanisms regulating the pro-fibrotic cytokine, TGF-Beta1 signaling in EOS and Fb will be investigated focusing on the role of Pin1 interaction with proximal Smads as well as PI-3-K and Akt. Our group discovered that up-regulation of isomerase Pin1 is an essential step in the TGF-Beta1 signaling pathway and seek to determine how Pin1 influences Smad6 and Smad3 including the role of Akt and PI-3-Kgamma in this process. It can be argued that few other centers, if any, around the world are capable of doing the clinical studies needed to retrieve airway EOS and at the same time have the experience necessary to critically dissect EOS biological functions to the same level of sophistication that our group is capable of doing. The collaborative studies among the three laboratories and the rich clinical research experience will allow us to move back and forth from ex vivo to in vivo experiments to better understand the role of EOS in modulating allergic airway inflammation and remodeling. Given the prominence of eosinophilic inflammation in a significant proportion of severe asthma patients, these advances will have direct implications for the patients most affected by this very common illness.

Public Health Relevance

From these collaborative and integrated approaches, we will unveil novel insights into the pathobiology of asthma, with implications for other illnesses where eosinophils are known to be an important participant These advances will be crucial to focusing the quest for the next generation of asthma therapeutics with important implications for other eosinophilic diseases such as hypereosinophilic syndrome, Churg-Strauss Syndrome and eosinophilic esophagitis/gastritis.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL088594-06
Application #
8476763
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Noel, Patricia
Project Start
2007-04-01
Project End
2018-03-31
Budget Start
2013-04-05
Budget End
2014-03-31
Support Year
6
Fiscal Year
2013
Total Cost
$2,062,673
Indirect Cost
$574,043
Name
University of Wisconsin Madison
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Schwantes, E A; Manthei, D M; Denlinger, L C et al. (2014) Interferon gene expression in sputum cells correlates with the Asthma Index Score during virus-induced exacerbations. Clin Exp Allergy 44:813-21
Esnault, Stephane; Kelly, Elizabeth A; Johansson, Mats W et al. (2014) Semaphorin 7A is expressed on airway eosinophils and upregulated by IL-5 family cytokines. Clin Immunol 150:90-100
Wickert, Lisa E; Karta, Maya R; Audhya, Anjon et al. (2014) Simvastatin attenuates rhinovirus-induced interferon and CXCL10 secretion from monocytic cells in vitro. J Leukoc Biol 95:951-9
Karta, Maya R; Gavala, Monica L; Curran, Colleen S et al. (2014) LPS modulates rhinovirus-induced chemokine secretion in monocytes and macrophages. Am J Respir Cell Mol Biol 51:125-34
Han, Shih-Tsung; Mosher, Deane F (2014) IL-5 induces suspended eosinophils to undergo unique global reorganization associated with priming. Am J Respir Cell Mol Biol 50:654-64
Mathur, Sameer K; Viswanathan, Ravi K (2014) Relevance of allergy in adult asthma. Curr Allergy Asthma Rep 14:437
Burnham, Mandy E; Esnault, Stephane; Roti Roti, Elon C et al. (2014) Cholesterol selectively regulates IL-5 induced mitogen activated protein kinase signaling in human eosinophils. PLoS One 9:e103122
Karta, Maya R; Wickert, Lisa E; Curran, Colleen S et al. (2014) Allergen challenge in vivo alters rhinovirus-induced chemokine secretion from human airway macrophages. J Allergy Clin Immunol 133:1227-30
Johansson, M W (2014) Activation states of blood eosinophils in asthma. Clin Exp Allergy 44:482-98
Oh, Jiyoung; Malter, James S (2013) Pin1-FADD interactions regulate Fas-mediated apoptosis in activated eosinophils. J Immunol 190:4937-45

Showing the most recent 10 out of 43 publications