Therapeutic regeneration of diseased or damaged myocardium with pluripotent stem (PS) cells depends on the ability to efficiently pre-differentiate PS cells in vitro to specialized endpoints within the coronary vascular and cardiomyocyte lineages. In addition, optimal engraftment of PS-derived cells will likely require the isolation of cells at selected developmental endpoints within these lineages. In addition, effects of factors within the transplanted environment on stem cell behavior must be considered. This Subproject addresses each of these requirements with the objective of utilizing pluripotent human embryonic stem cells (hESCs) to re-muscularize damaged myocardium.
Aim 1 tests the hypothesis that human definitive endoderm (DE) induces cardiomyogenesis in pluripotent hESCs, as well as in adult (c-kit+) stem cells. After optimizing DE-induced differentiation, factors secreted by DE will be proteomically characterized to design a biochemically-defined cardiomyogenic mixture, to be evaluated using a novel luciferase-based screening assay that monitors cardiomyogenesis in hESCs in real-time.
Aim 2 will isolate Nkx-2.5+/aMHC- cells, which are early in the cardiomyogenic lineage, via FACS selection or direct biochemical induction to test the hypothesis that immature 'cardiomyoblasts', in comparison with hESC-derived mature cardiomyocytes, optimally engraft and functionally regenerate infarcted myocardium. The availability of pure Nkx-2.5+/aMHC- cells (Aim 2) and mature cardiomyocytes (Aim 1) will also enable the genetic profiling of cardiomyogenic transcriptomes, which will further inform cardiomyogenic signaling and consequently growth factor application to optimally induce differentiation.
Aim 3 will assess the effects of growth factors/cytokines in myocardial interstitial fluid (MIF), a non-cellular exudate isolated from ischemic myocardium, on the behavior of hESC-derived cells in the cardiomyogenic lineage. Findings from this study will significantly contribute toward elucidation of how human heart disease may be ameliorated by via cellular therapy.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Medical College of Wisconsin
United States
Zip Code
Kolander, Kurt D; Holtz, Mary L; Cossette, Stephanie M et al. (2014) Epicardial GATA factors regulate early coronary vascular plexus formation. Dev Biol 386:204-15
Lakshmikanthan, Sribalaji; Zieba, Bartosz J; Ge, Zhi-Dong et al. (2014) Rap1b in smooth muscle and endothelium is required for maintenance of vascular tone and normal blood pressure. Arterioscler Thromb Vasc Biol 34:1486-94
Fisher, Joseph B; Kim, Min-Su; Blinka, Steven et al. (2012) Stress-induced cell-cycle activation in Tip60 haploinsufficient adult cardiomyocytes. PLoS One 7:e31569
Van Orman, Jordan R; Si-Tayeb, Karim; Duncan, Stephen A et al. (2012) Induction of cardiomyogenesis in human embryonic stem cells by human embryonic stem cell-derived definitive endoderm. Stem Cells Dev 21:987-94
Auchampach, John A; Maas, Jason E; Wan, Tina C et al. (2011) Are we putting too much stock in mice? J Mol Cell Cardiol 50:584-5
Si-Tayeb, Karim; Noto, Fallon K; Sepac, Ana et al. (2010) Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC Dev Biol 10:81
Si-Tayeb, Karim; Noto, Fallon K; Nagaoka, Masato et al. (2010) Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51:297-305
Van Orman, Jordan R; Weihrauch, Dorothee; Warltier, David C et al. (2009) Myocardial interstitial fluid inhibits proliferation and cardiomyocyte differentiation in pluripotent embryonic stem cells. Am J Physiol Heart Circ Physiol 297:H1369-76