Cardiovascular disease is the most common cause of mortality in adults, and congenital heart defects are the most common form of birth defects in the US. AMP-activated protein kinase (AMPK) is a master regulator of energy balance and homeostasis and plays a central role in the switch from fatty acids to glycolysis during cardiac hypertrophy and heart failure. AMPKa2 is the predominant isoform ofthe catalytic subunit expressed in the heart and is encoded by the Prkaa2 gene. Although AMPK and its role in metabolism and heart failure have been extensively studied, the transcripfional control ofthe genes encoding AMPK subunits is completely unknown. The MADS box transcription factor MEF2C is required for cardiac development and functions as a signal responsive transcription factor that interacts with a variety of cofactors to either negatively or positively regulate transcription. The most potent transcriptional coactivator for MEF2C is the SAP domain transcripfional regulator Myocardin. MEF2C specifically interacts with Myocardin-93S, which is highly enriched in the heart, yet the transcripfional targets and mechanisms of synergy facilitated by the Myocardin-MEF2 complex have not been identified. Preliminary studies found that the Prkaa2 gene is a direct transcripfional target ofthe MEF2C-Myocardin complex via a novel cardiac- specific enhancer. This enhancer contains two bona fide MEF2 binding sites that function together in a multiplicative fashion in response to Myocardin-93S and MEF2C. Although transcripfional synergy is frequently observed in many contexts and is a well-described phenomenon, the role of cis-acting elements, their position, spacing, and sequence in facilitating synergy have been far less well described. Using transgenic mouse, cell culture, biochemical, and mass spectrometry approaches, this work will define determinants of MEF2-Myocardin transcripfional synergy, will identify additional interaction partners for MEF2C and Myocardin through interactome mapping, and will identify in vivo targets ofthe Myocardin-MEF2 complex. This work will also determine the upstream regulation of Prkaa2 for the first time. This work may provide additional strategies for manipulating AMPK expression during heart failure.

Public Health Relevance

Cardiovascular disease is the most common cause of mortality in adults, and congenital heart defects are the most common form of birth defects in the US. AMPK controls energy balance in the heart and the switch from fatty acid to glucose metabolism during heart failure. This work will define how the gene encoding the regulatory subunit of AMPK is controlled and may provide strategies for manipulating this central regulator of metabolism during heart failure. This work will also define basic mechanisms of gene activation.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
J. David Gladstone Institutes
San Francisco
United States
Zip Code
Celona, Barbara; Dollen, John von; Vatsavayai, Sarat C et al. (2017) Suppression of C9orf72 RNA repeat-induced neurotoxicity by the ALS-associated RNA-binding protein Zfp106. Elife 6:
Lobingier, Braden T; Hüttenhain, Ruth; Eichel, Kelsie et al. (2017) An Approach to Spatiotemporally Resolve Protein Interaction Networks in Living Cells. Cell 169:350-360.e12
Overman, Jeroen; Fontaine, Frank; Moustaqil, Mehdi et al. (2017) Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice. Elife 6:
Judge, Luke M; Perez-Bermejo, Juan A; Truong, Annie et al. (2017) A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress. JCI Insight 2:
Du, Dan; Roguev, Assen; Gordon, David E et al. (2017) Genetic interaction mapping in mammalian cells using CRISPR interference. Nat Methods 14:577-580
Liu, S John; Horlbeck, Max A; Cho, Seung Woo et al. (2017) CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355:
Anderson, Courtney M; Hu, Jianxin; Thomas, Reuben et al. (2017) Cooperative activation of cardiac transcription through myocardin bridging of paired MEF2 sites. Development 144:1235-1241
Barnes, Ralston M; Harris, Ian S; Jaehnig, Eric J et al. (2016) MEF2C regulates outflow tract alignment and transcriptional control of Tdgf1. Development 143:774-9
Huebsch, Nathaniel; Loskill, Peter; Deveshwar, Nikhil et al. (2016) Miniaturized iPS-Cell-Derived Cardiac Muscles for Physiologically Relevant Drug Response Analyses. Sci Rep 6:24726
Hota, Swetansu K; Bruneau, Benoit G (2016) ATP-dependent chromatin remodeling during mammalian development. Development 143:2882-97

Showing the most recent 10 out of 67 publications