In the Advanced Proteomics Core, we will apply unbiased proteomics approaches to characterize protein- protein interactions (PPIs) and post-translational modifications (PTMs) for transcription factor complexes that play important roles in early heart development. These studies will describe the interconnected networks of transcription factors, chromatin remodeling complexes, and as-yet-undefined cellular factors that function to regulate gene expression during cardiac development. The Proteomics Core will enable research projects to analyze biochemical complexes that underlie cardiac development. Through tagging of these factors, cellular expression, and affinity purification, these complexes will be elucidated by mass spectrometry (AP-MS), and data will be analyzed using newly developed algorithms to determine high confidence protein interactions. Using specific enrichment and mass spectrometry-based approaches, the Proteomics Core will identify post- translational modifications of purified complex components. Chemical enrichment strategies to purify phosphorylated species and antibody-based strategies to purify acetylated or ubiquitylated species will collectively identify modification events that may affect the formation or function of protein complexes underlying cardiac gene expression.

Public Health Relevance

The networks we uncover in this study will inform our understanding of the molecular instructions that enable cardiac differentiation, providing the underlying knowledge necessary to identify targets for therapeutic approaches to heart failure or severe heart damage.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL089707-07
Application #
8710319
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
7
Fiscal Year
2014
Total Cost
Indirect Cost
Name
J. David Gladstone Institutes
Department
Type
DUNS #
City
San Francisco
State
CA
Country
United States
Zip Code
94158
Sun, Xin; Hota, Swetansu K; Zhou, Yu-Qing et al. (2018) Cardiac-enriched BAF chromatin-remodeling complex subunit Baf60c regulates gene expression programs essential for heart development and function. Biol Open 7:
Libby, Ashley Rg; Joy, David A; So, Po-Lin et al. (2018) Spatiotemporal mosaic self-patterning of pluripotent stem cells using CRISPR interference. Elife 7:
Miyaoka, Yuichiro; Mayerl, Steven J; Chan, Amanda H et al. (2018) Detection and Quantification of HDR and NHEJ Induced by Genome Editing at Endogenous Gene Loci Using Droplet Digital PCR. Methods Mol Biol 1768:349-362
Anderson, Courtney M; Hu, Jianxin; Thomas, Reuben et al. (2017) Cooperative activation of cardiac transcription through myocardin bridging of paired MEF2 sites. Development 144:1235-1241
Thomas, Reuben; Thomas, Sean; Holloway, Alisha K et al. (2017) Features that define the best ChIP-seq peak calling algorithms. Brief Bioinform 18:441-450
Overman, Jeroen; Fontaine, Frank; Moustaqil, Mehdi et al. (2017) Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice. Elife 6:
Judge, Luke M; Perez-Bermejo, Juan A; Truong, Annie et al. (2017) A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress. JCI Insight 2:
Du, Dan; Roguev, Assen; Gordon, David E et al. (2017) Genetic interaction mapping in mammalian cells using CRISPR interference. Nat Methods 14:577-580
Lobingier, Braden T; Hüttenhain, Ruth; Eichel, Kelsie et al. (2017) An Approach to Spatiotemporally Resolve Protein Interaction Networks in Living Cells. Cell 169:350-360.e12
Celona, Barbara; Dollen, John von; Vatsavayai, Sarat C et al. (2017) Suppression of C9orf72 RNA repeat-induced neurotoxicity by the ALS-associated RNA-binding protein Zfp106. Elife 6:

Showing the most recent 10 out of 72 publications