The aims of the Administrative Core are to provide: 1) administrative support for the Program Project Grant, conformity to guidelines/policies, requisite reporting, biostatistical support, and human resource management;and 2) budget oversight and centralization of shared budgetary items. The Core will provide assistance to the director in the handling of correspondence, forms, competitive and non-competitive renewals and acts as a liaison with the institution, the NIH/NHLBI and other entities. The Core will provide essential secretarial/clerical services to all investigators with regards to the preparation of manuscripts, reviews, articles, letters, travel arrangements, and arrangements for visiting scientists. The Core will make arrangements for regular research meetings of the program scientists and assist in organizing program seminars. It coordinates the advisory committees and provides orientation for Core users. All financial matters for the Program Project Grant are handled by the core, including the monitoring and status of service contracts, coordinating repair and service schedules. The Core will provide statistical analysis, experimental design and data quality assurance.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL090550-05
Application #
8448094
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
2015-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
5
Fiscal Year
2013
Total Cost
$189,366
Indirect Cost
$60,106
Name
Henry Ford Health System
Department
Type
DUNS #
073134603
City
Detroit
State
MI
Country
United States
Zip Code
48202
Gordish, Kevin L; Beierwaltes, William H (2014) Resveratrol induces acute endothelium-dependent renal vasodilation mediated through nitric oxide and reactive oxygen species scavenging. Am J Physiol Renal Physiol 306:F542-50
Ortiz-Capisano, M Cecilia; Reddy, Mahendranath; Mendez, Mariela et al. (2013) Juxtaglomerular cell CaSR stimulation decreases renin release via activation of the PLC/IP(3) pathway and the ryanodine receptor. Am J Physiol Renal Physiol 304:F248-56
Atchison, Douglas K; Beierwaltes, William H (2013) The influence of extracellular and intracellular calcium on the secretion of renin. Pflugers Arch 465:59-69
Ortiz-Capisano, M Cecilia; Atchison, Douglas K; Harding, Pamela et al. (2013) Adenosine inhibits renin release from juxtaglomerular cells via an A1 receptor-TRPC-mediated pathway. Am J Physiol Renal Physiol 305:F1209-19
Ramseyer, Vanesa D; Garvin, Jeffrey L (2013) Tumor necrosis factor-ýý: regulation of renal function and blood pressure. Am J Physiol Renal Physiol 304:F1231-42
Beierwaltes, William H (2013) Endothelial dysfunction in the outer medullary vasa recta as a key to contrast media-induced nephropathy. Am J Physiol Renal Physiol 304:F31-2
Atchison, Douglas K; Harding, Pamela; Beierwaltes, William H (2013) Vitamin D increases plasma renin activity independently of plasma Ca2+ via hypovolemia and *-adrenergic activity. Am J Physiol Renal Physiol 305:F1109-17
Cabral, Pablo D; Garvin, Jeffrey L (2013) Less potassium coming out, less sodium going in: phenotyping ROMK knockout rats. Hypertension 62:240-1
Ren, Yilin; D'Ambrosio, Martin A; Wang, Hong et al. (2012) Mechanisms of carbon monoxide attenuation of tubuloglomerular feedback. Hypertension 59:1139-44
Beierwaltes, William H (2012) Are microRNAs the key to transforming renin progenitor cells in the afferent renal circulation? Am J Physiol Renal Physiol 302:F27-8

Showing the most recent 10 out of 27 publications