Overview The production of genetically-modified mouse models and antibody reagents has revolutionized biomedical research (1-4). These research tools have made it possible to answer many questions that cannot be addressed otherwise, and have helped to define the roles of specific gene products in complex processes such as adipogenesis and obesity, diabetes mellitus, and plasma lipid metabolism. The principal objectives of the Mouse Model and Antibody Core of this Program Project Grant (PPG) are to generate gene-targeted mice and to prepare both monoclonal and polyclonal antibodies for the three projects. Genetically modified mouse models and polyclonal or monoclonal antibodies will be used in all three projects. It is both expensive and time consuming to generate new lines of mice and to create antibodies, and both require considerable technical expertise. Even though mouse and antibody reagents are critical for many modern biomedical research projects, it is very difficult for the majority of laboratories to keep the requisite techniques """"""""up in the air"""""""" at all times. Often, the required technical expertise disappears when a technician leaves for another institution or a postdoctoral fellow departs for a faculty position. It is then inefficient, expensive, and painful to re-establish the techniques within the laboratory. Therefore, it makes sense, particularly for a PPG, to centralize these functions within a core facility. In this PPG, we are fortunate to inherit the technical expertise of BayGenomics personnel (Drs. Fong, Young, Reue, Hu) in creating genetargeted mice, and the substantial experience of Drs. Bensadoun, Fong, and Young in the production of monoclonal and polyclonal antibodies.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Los Angeles
United States
Zip Code
Hu, Xuchen; Sleeman, Mark W; Miyashita, Kazuya et al. (2017) Monoclonal antibodies that bind to the Ly6 domain of GPIHBP1 abolish the binding of LPL. J Lipid Res 58:208-215
Gao, Jie; Marosi, Mate; Choi, Jinkuk et al. (2017) The E3 ubiquitin ligase IDOL regulates synaptic ApoER2 levels and is important for plasticity and learning. Elife 6:
Allan, Christopher M; Jung, Cris J; Larsson, Mikael et al. (2017) Mutating a conserved cysteine in GPIHBP1 reduces amounts of GPIHBP1 in capillaries and abolishes LPL binding. J Lipid Res 58:1453-1461
Allan, Christopher M; Larsson, Mikael; Jung, Rachel S et al. (2017) Mobility of ""HSPG-bound"" LPL explains how LPL is able to reach GPIHBP1 on capillaries. J Lipid Res 58:216-225
Hu, Xuchen; Dallinga-Thie, Geesje M; Hovingh, G Kees et al. (2017) GPIHBP1 autoantibodies in a patient with unexplained chylomicronemia. J Clin Lipidol 11:964-971
Zhang, Li; Rajbhandari, Prashant; Priest, Christina et al. (2017) Inhibition of cholesterol biosynthesis through RNF145-dependent ubiquitination of SCAP. Elife 6:
He, Cuiwen; Hu, Xuchen; Jung, Rachel S et al. (2017) Lipoprotein lipase reaches the capillary lumen in chickens despite an apparent absence of GPIHBP1. JCI Insight 2:
Allan, Christopher M; Tran, Deanna; Tu, Yiping et al. (2017) A hypomorphic Egfr allele does not ameliorate the palmoplantar keratoderma caused by SLURP1 deficiency. Exp Dermatol 26:1134-1136
Wang, Jiexin; Rajbhandari, Prashant; Damianov, Andrey et al. (2017) RNA-binding protein PSPC1 promotes the differentiation-dependent nuclear export of adipocyte RNAs. J Clin Invest 127:987-1004
Wang, Huan; Airola, Michael V; Reue, Karen (2017) How lipid droplets ""TAG"" along: Glycerolipid synthetic enzymes and lipid storage. Biochim Biophys Acta 1862:1131-1145

Showing the most recent 10 out of 137 publications