The objective of Project 3 is to define novel molecular pathways that controi adipocyte differentiation and function. Elucidating signaling pathways that govern adipocyte differentiation and triglyceride storage in adipose tissue pathways is expected to uncover new opportunities for therapeutic intervention in human metabolic disease. During the current grant period, we discovered three previously uncharacterized proteins that control lipid metabolism in adipocytes (TLE3, PSPC1, and IDOL). Building on our work in the current grant period, we propose a series of molecular, cell biological, and mouse studies to investigate hypotheses regarding the roles of these novel regulatory factors in physiology and disease.
Specific Aim 1 is to elucidate the mechanism of action of TLE3 in white versus brown adipose tissue phenotypic specification. We have discovered that mice overexpressing TLE3 in adipose tissue show profound alterations in adipocyte function, including a phenotypic shift from brown to white adipose tissue. Shifting white adipose tissue towards a more brown character is associated with improved metabolism and resistance to diabetes. A better understanding ofthe molecular pathways that control adipocyte phenotype would be highly significant and may have therapeutic implications.
Specific Aim 2 is to determine the function and mechanism of action of the putative RNA-binding protein PSPC1 in adipocyte differentiation. PSPC1 was identified along with TLE3 in our initial high-throughput cDNA screen as a new promoter of adipocyte differentiation. Deciphering the mechanism of action of this novel factor is likely to uncover new modes of action for regulatory factors in the control of adipocyte gene expression.
Specific Aim 3 is to define the role of the LXR-IDOL axis in triglyceride metabolism and lipid storage. Preliminary analysis of Idol knockout mice points to an unexpected function in the control of triglyceride metabolism and lipid storage. We hypothesize that LXR-dependent regulation of IDOL in adipose tissue is an important determinant of peripheral lipoprotein receptor activity and that IDOL provides a mechanism to link alterations in diet and sterol metabolism to lipid uptake and metabolism in these tissues.

Public Health Relevance

Altered adipose tissue function or mass is associated with cardiovascular metabolic disease, underscoring the fundamental importance of adipocytes in metabolism. Elucidating signaling pathways that govern adipocyte differentiation and triglyceride storage in adipose tissue pathways is expected to uncover new opportunities for therapeutic intervention in human metabolic diseases (e.g., obesity, diabetes mellitus).

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-PPG-R (O1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Los Angeles
United States
Zip Code
Hu, Xuchen; Sleeman, Mark W; Miyashita, Kazuya et al. (2017) Monoclonal antibodies that bind to the Ly6 domain of GPIHBP1 abolish the binding of LPL. J Lipid Res 58:208-215
Gao, Jie; Marosi, Mate; Choi, Jinkuk et al. (2017) The E3 ubiquitin ligase IDOL regulates synaptic ApoER2 levels and is important for plasticity and learning. Elife 6:
Allan, Christopher M; Jung, Cris J; Larsson, Mikael et al. (2017) Mutating a conserved cysteine in GPIHBP1 reduces amounts of GPIHBP1 in capillaries and abolishes LPL binding. J Lipid Res 58:1453-1461
Allan, Christopher M; Larsson, Mikael; Jung, Rachel S et al. (2017) Mobility of ""HSPG-bound"" LPL explains how LPL is able to reach GPIHBP1 on capillaries. J Lipid Res 58:216-225
Hu, Xuchen; Dallinga-Thie, Geesje M; Hovingh, G Kees et al. (2017) GPIHBP1 autoantibodies in a patient with unexplained chylomicronemia. J Clin Lipidol 11:964-971
Zhang, Li; Rajbhandari, Prashant; Priest, Christina et al. (2017) Inhibition of cholesterol biosynthesis through RNF145-dependent ubiquitination of SCAP. Elife 6:
He, Cuiwen; Hu, Xuchen; Jung, Rachel S et al. (2017) Lipoprotein lipase reaches the capillary lumen in chickens despite an apparent absence of GPIHBP1. JCI Insight 2:
Allan, Christopher M; Tran, Deanna; Tu, Yiping et al. (2017) A hypomorphic Egfr allele does not ameliorate the palmoplantar keratoderma caused by SLURP1 deficiency. Exp Dermatol 26:1134-1136
Wang, Jiexin; Rajbhandari, Prashant; Damianov, Andrey et al. (2017) RNA-binding protein PSPC1 promotes the differentiation-dependent nuclear export of adipocyte RNAs. J Clin Invest 127:987-1004
Wang, Huan; Airola, Michael V; Reue, Karen (2017) How lipid droplets ""TAG"" along: Glycerolipid synthetic enzymes and lipid storage. Biochim Biophys Acta 1862:1131-1145

Showing the most recent 10 out of 137 publications