Heart failure (HF) continues to be a major health problem and is an end-point of cardiac injury, which in many cases is preceded by cardiac hypertrophy and adverse remodeling. We have found that G protein-coupled receptor (GPCR) signaling and regulation of this signaling by GPCR kinases (GRKs) play crucial roles in the pathological processes of maladaptive cardiac hypertrophy and ventricular remodeling. GRK2 and GRKS are the major cardiac GRKs and both have been found to be up-regulated in failing human myocardium so their function in the injured heart is of significance. In the first funding cycle of this Project, we have identified that GRKS plays a novel non-GRK role in cardiomyocyte signaling and function within the nucleus of myocytes acting as a Class II histone deacetylase (HDAC) kinase. This HDAC kinase activity of GRKS can facilitate maladaptive cardiac hypertrophy and accelerate HF development. We now have new preliminary data to suggest there are additional targets within the myocyte for GRKS, including in the nucleus, that can promote myocyte dysfunction. Included is the nuclear factor of activated T-cell (NFAT) pathway and it appears that GRKS can activate this critical molecule in the heart. We will also investigate the role of GRKS in ischemic injury and repair and have assembled several key mouse models and viral constructs to delineate specific pathological and therapeutic mechanisms surrounding this kinase. Included is the development of a novel knock-in mouse where all endogenous GRKS will be defective in its ability to enter the nucleus. Using these we will test the Central Hypothesis that GRKS plays a critical (patho)- physiological role in the cardiomyocyte's response to injury and targeting and manipulating its unique cellular localization and activity is a novel therapeutic strategy for preventing maladaptive cardiac hypertrophy, ventricular remodeling and HF. Our associated Specific Aims to test this hypothesis are: [1] To determine the mechanisms involved in the GRKS-mediated regulation of cardiac NFAT signaling; [2] To determine the mechanistic role of nuclear GRKS activity in the heart's response to ischemic injury; and [3] To determine the ultimate physiological role for nuclear GRKS activity and localization in cardiac injury and repair.

Public Health Relevance

Heart failure (HF) is a major health problem throughout the world and understanding molecular processes involved in cardiac injury and repair can advance development of novel therapies. We have found that a specific kinase, GRKS, can play a key role in HF pathogenesis and through continued GRKS-targeted research in this area can lead to translatable strategies to combat cardiac injury HF.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL091799-07
Application #
8845229
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2015-05-01
Budget End
2016-04-30
Support Year
7
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Temple University
Department
Type
DUNS #
057123192
City
Philadelphia
State
PA
Country
United States
Zip Code
19122
Cannavo, Alessandro; Rengo, Giuseppe; Liccardo, Daniela et al. (2017) ?1-Blockade Prevents Post-Ischemic Myocardial Decompensation Via ?3AR-Dependent Protective Sphingosine-1 Phosphate Signaling. J Am Coll Cardiol 70:182-192
Schumacher, Sarah M; Koch, Walter J (2017) Noncanonical Roles of G Protein-coupled Receptor Kinases in Cardiovascular Signaling. J Cardiovasc Pharmacol 70:129-141
Waldschmidt, Helen V; Homan, Kristoff T; Cato, Marilyn C et al. (2017) Structure-Based Design of Highly Selective and Potent G Protein-Coupled Receptor Kinase 2 Inhibitors Based on Paroxetine. J Med Chem 60:3052-3069
Eisner, VerĂ³nica; Cupo, Ryan R; Gao, Erhe et al. (2017) Mitochondrial fusion dynamics is robust in the heart and depends on calcium oscillations and contractile activity. Proc Natl Acad Sci U S A 114:E859-E868
Bouley, Renee; Waldschmidt, Helen V; Cato, M Claire et al. (2017) Structural Determinants Influencing the Potency and Selectivity of Indazole-Paroxetine Hybrid G Protein-Coupled Receptor Kinase 2 Inhibitors. Mol Pharmacol 92:707-717
Guo, Shuchi; Carter, Rhonda L; Grisanti, Laurel A et al. (2017) Impact of paroxetine on proximal ?-adrenergic receptor signaling. Cell Signal 38:127-133
Woodall, Benjamin P; Woodall, Meryl C; Luongo, Timothy S et al. (2016) Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy. J Biol Chem 291:21913-21924
Hullmann, Jonathan; Traynham, Christopher J; Coleman, Ryan C et al. (2016) The expanding GRK interactome: Implications in cardiovascular disease and potential for therapeutic development. Pharmacol Res 110:52-64
Wasilewski, Melissa A; Grisanti, Laurel A; Song, Jianliang et al. (2016) Vasopressin Type 1A Receptor Deletion Enhances Cardiac Contractility, ?-Adrenergic Receptor Sensitivity and Acute Cardiac Injury-induced Dysfunction. Clin Sci (Lond) :
Zhou, Jibin; Ahmad, Firdos; Lal, Hind et al. (2016) Response by Zhou et al to Letter Regarding Article, ""Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy"". Circ Res 119:e29-e30

Showing the most recent 10 out of 148 publications