The objective of this multidisciplinary proposal is to understand key mechanisms of muscle adaptation to exercise in health and, especially, in COPD. Exercise capacity is impaired in COPD, and increasingly skeletal muscle and cardiovascular dysfunction are implicated. Increased oxidative stress and reduced muscle capillarity have been reported and will be a major theme in this application. Studies will be performed in humans with COPD, in mouse muscle single fibers and in several intact transgenic mouse lines to address mechanisms by which hypoxia and oxidative stress affect muscle structure, function and responses to exercise in health and in COPD. In humans, the sources and importance of oxidative stress will be studied in COPD patients with normal and reduced lean body mass (cachectic phenotype). In mice, the possible roles of oxidative stress, inflammation and apoptosis in the exercise response will be investigated using four specially created transgenic lines. Two of these produce an emphysematous phenotype with muscle wasting based on a) inflammation (pulmonary TNF-a overexpression) and b) apoptosis (pulmonary VEGF deletion). The other two deplete VEGF in c) heart and d) skeletal muscle, which is relevant because reduced muscle VEGF levels are found in COPD. Studies will be performed in both isolated single muscle fibers and intact animals. This research program will elucidate the effects of lung damage in COPD on skeletal muscle, and also will address interactions among potential comorbid conditions common in COPD - cardiac and muscle dysfunction. Overarching hypotheses are that while muscle adaptive responses may be in part signaled by oxidative stress, excessive oxidative stress interferes with muscle contractile and vascular function and also the expression of genes important in adaptation, especially VEGF. Project 1 (Wagner) uses muscle biopsy samples from COPD patients studied in Project 3 to assess the roles of inflammation and oxidative stress on muscle function and VEGF expression and action. It also studies the above four transgenic lines to explore possible pathways to muscle dysfunction in COPD and to understand interactions among impaired lungs, skeletal muscle and heart. Project 2 (Hogan) uses mouse single muscle fibers to elucidate the mechanisms by which hypoxia and oxidative stress impair muscle contractile function, using both normal mice and the same transgenic line overexpressing TNF-a in the lung as Project 1. Project 3 (Richardson) examines sources and importance of oxidative stress to acute exercise and to training in patients with COPD. The program is supported by tissue imaging and administrative cores. Elucidating mechanisms of adaptive response to exercise - in particular the role of oxidative stress - and the mechanisms relating lung disease to muscle dysfunction, should lead to specific, rational strategies for improving exercise capacity and quality of life in patients with COPD.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
1P01HL091830-01A1
Application #
7561197
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Punturieri, Antonello
Project Start
2008-12-08
Project End
2013-11-30
Budget Start
2008-12-08
Budget End
2009-11-30
Support Year
1
Fiscal Year
2009
Total Cost
$2,051,236
Indirect Cost
Name
University of California San Diego
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Broxterman, Ryan M; Layec, Gwenael; Hureau, Thomas J et al. (2018) Response. Med Sci Sports Exerc 50:1719
Trinity, Joel D; Layec, Gwenael; Hart, Corey R et al. (2018) Sex-specific impact of aging on the blood pressure response to exercise. Am J Physiol Heart Circ Physiol 314:H95-H104
Broxterman, Ryan M; Layec, Gwenael; Hureau, Thomas J et al. (2017) Bioenergetics and ATP Synthesis during Exercise: Role of Group III/IV Muscle Afferents. Med Sci Sports Exerc 49:2404-2413
Ives, Stephen J; Park, Song Young; Kwon, Oh Sung et al. (2017) TRPV1 channels in human skeletal muscle feed arteries: implications for vascular function. Exp Physiol 102:1245-1258
Machin, Daniel R; Clifton, Heather L; Richardson, Russell S et al. (2017) Acute oral tetrahydrobiopterin administration ameliorates endothelial dysfunction in systemic sclerosis. Clin Exp Rheumatol 35 Suppl 106:167-172
Wang, Eivind; Nyberg, Stian Kwak; Hoff, Jan et al. (2017) Impact of maximal strength training on work efficiency and muscle fiber type in the elderly: Implications for physical function and fall prevention. Exp Gerontol 91:64-71
Bharath, Leena P; Cho, Jae Min; Park, Seul-Ki et al. (2017) Endothelial Cell Autophagy Maintains Shear Stress-Induced Nitric Oxide Generation via Glycolysis-Dependent Purinergic Signaling to Endothelial Nitric Oxide Synthase. Arterioscler Thromb Vasc Biol 37:1646-1656
Breen, Ellen C; Scadeng, Miriam; Lai, N Chin et al. (2017) Functional magnetic resonance imaging for in vivo quantification of pulmonary hypertension in the Sugen 5416/hypoxia mouse. Exp Physiol 102:347-353
Layec, Gwenael; Hart, Corey R; Trinity, Joel D et al. (2017) Oxygen delivery and the restoration of the muscle energetic balance following exercise: implications for delayed muscle recovery in patients with COPD. Am J Physiol Endocrinol Metab 313:E94-E104
Wray, D Walter; Amann, Markus; Richardson, Russell S (2017) Peripheral vascular function, oxygen delivery and utilization: the impact of oxidative stress in aging and heart failure with reduced ejection fraction. Heart Fail Rev 22:149-166

Showing the most recent 10 out of 95 publications