Despite advances in CF research, we still do not understand the pathogenesis of airways disease. A major mpediment to progress is lack of a CF animal model other than the mouse. Although CF mice have been produced, they do not develop the airway disease typically found in humans. Therefore, we developed a pig with a targeted disruption of the CFTR gene. We chose the pig because its lungs share many anatomical, histological, biochemical, and physiologic features with human lungs. In this project, we take the unique opportunity to learn how loss of CFTR alters airway epithelial function in this new CF model. Several hypotheses about the pathogenesis of CF airway disease center on defective airway epithelial electrolyte transport and abnormal airway surface liquid volume and composition. These topics are the main focus of our application. Through collaborations with the other projects in the Program, we will discern how altered epithelial function relates to inflammation and infection, clinical hallmarks of the disease. We concentrate on early postnatal and young pigs because there is a critical lack of information about the human CF lung during this time, and yet this is precisely when loss of CFTR initiates disease.
Specific Aim 1. Does loss of CFTR alter the function of porcine airway epithelia? We will learn how lack of CFTR changes ion transport in vivo using measurements of transepithelial voltage, in vitro using cultures of differentiated pig airway epithelia, in freshly excised airway epithelia, and in the distal airways of the lung. We will also learn whether apical Na+ channel and alternative CI"""""""" channel activities are increased, and how their function relates to the clinical phenotype.
Specific Aim 2. Does loss of porcine CFTR change the airway surface liquid (ASL)? Much controversy surrounds hypotheses about how lack of CFTR affects ASL. Does it reduce ASL volume? Does it change ASL ion concentrations? Is ASL pH altered? Do changes occur both in vitro and in vivo? We will answer these questions using several independent methods. By studying both young pigs and animals after they develop inflammation and/or infection, we will discover how these processes change this critical liquid.
Specific Aim 3. Does loss of CFTR disrupt mucociliary transport? Lack of CFTR might cause defective mucociliary transport (MCT) thereby initiating airway disease. Alternatively, other factors might initiate the disease process, and then secondary defects in MCT might worsen airways disease. Current data do not allow us to discriminate between these or other hypotheses. Here, we test the hypothesis that loss of CFTR disrupts normal MCT in vitro and in vivo. These studies will provide new insights into both CF pathogenesis and pathophysiology and thereby accelerate the discovery of novel therapies for this lethal disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL091842-05
Application #
8381589
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
2013-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
5
Fiscal Year
2012
Total Cost
$258,639
Indirect Cost
$86,213
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Meyerholz, David K; Sieren, Jessica C; Beck, Amanda P et al. (2018) Approaches to Evaluate Lung Inflammation in Translational Research. Vet Pathol 55:42-52
Meyerholz, David K; Stoltz, David A; Gansemer, Nick D et al. (2018) Lack of cystic fibrosis transmembrane conductance regulator disrupts fetal airway development in pigs. Lab Invest 98:825-838
Gray, Robert D; Hardisty, Gareth; Regan, Kate H et al. (2018) Delayed neutrophil apoptosis enhances NET formation in cystic fibrosis. Thorax 73:134-144
Meyerholz, David K; Beck, Amanda P; Goeken, J Adam et al. (2018) Glycogen depletion can increase the specificity of mucin detection in airway tissues. BMC Res Notes 11:763
Reznikov, Leah R; Meyerholz, David K; Kuan, Shin-Ping et al. (2018) Solitary Cholinergic Stimulation Induces Airway Hyperreactivity and Transcription of Distinct Pro-inflammatory Pathways. Lung 196:219-229
Meyerholz, David K; Ofori-Amanfo, Georgina K; Leidinger, Mariah R et al. (2017) Immunohistochemical Markers for Prospective Studies in Neurofibromatosis-1 Porcine Models. J Histochem Cytochem 65:607-618
Li, Xiaopeng; Vargas Buonfiglio, Luis G; Adam, Ryan J et al. (2017) Cystic Fibrosis Transmembrane Conductance Regulator Potentiation as a Therapeutic Strategy for Pulmonary Edema: A Proof-of-Concept Study in Pigs. Crit Care Med 45:e1240-e1246
Sinn, P L; Hwang, B-Y; Li, N et al. (2017) Novel GP64 envelope variants for improved delivery to human airway epithelial cells. Gene Ther 24:674-679
Staber, J M; Pollpeter, M J; Anderson, C-G et al. (2017) Long-term correction of hemophilia A mice following lentiviral mediated delivery of an optimized canine factor VIII gene. Gene Ther 24:742-748
Ramsey, Bonnie W; Welsh, Michael J (2017) AJRCCM: 100-Year Anniversary. Progress along the Pathway of Discovery Leading to Treatment and Cure of Cystic Fibrosis. Am J Respir Crit Care Med 195:1092-1099

Showing the most recent 10 out of 110 publications