Cystic fibrosis (CF) is a common autosomal recessive disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). CF affects multiple organs, including lungs, pancreas, intestine, liver, sweat glands, gallbladder and the male genital tract. Airway infection and inflammation currently cause most of the morbidity and mortality. Although several therapies have improved the lives of patients, current treatments are inadequate and CF remains a lethal disease. Our knowledge about the pathogenesis of the disease, its progression, and the state of the neonatal lung is inadequate. These gaps in our knowledge have hindered attempts to develop better treatments and preventions for CF lung disease. A major impediment to addressing these issues has been limitations of current animal models. Although mouse strains carrying null and missense CFTR mutations have made enormous contributions, CF mice do not develop the airway or pancreatic disease typically found in humans. We recently generated CF pigs that replicate many of the key features of human CF disease including intestinal obstruction, exocrine pancreatic destruction, micro-gallbladder, vas deferens abnormalities, focal billary cirrhosis, congenital airway structural abnormalities, and airway and sinus infection with time. The goals ofthe Animal Core will be to (1) Provide Program investigators with CF and non-CF pigs;(2) Help Program investigators successfully accomplish the aims of their Projects. The Animal Core will function seamlessly through already established interactions with the Project Leaders, Morphology Core, Imaging Core, and the Administrative Core. The success ofthe Animal Models Core is ensured because ofthe commitment, experience, and expertise that the personnel bring to the Core.

Public Health Relevance

Cystic fibrosis is a corhmon life-shortening genetic disease that causes progressive lung failure due to recurrent infections and chronic inflammation. These studies will use the new cystic fibrosis pig model to better understand the early events in cystic fibrosis lung disease, thereby leading to better therapies.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL091842-06
Application #
8600366
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-09-19
Budget End
2014-06-30
Support Year
6
Fiscal Year
2013
Total Cost
$769,575
Indirect Cost
$259,923
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Park, Jung-Eun; Li, Kun; Barlan, Arlene et al. (2016) Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism. Proc Natl Acad Sci U S A 113:12262-12267
Cooney, Ashley L; Abou Alaiwa, Mahmoud H; Shah, Viral S et al. (2016) Lentiviral-mediated phenotypic correction of cystic fibrosis pigs. JCI Insight 1:
Gibson-Corley, Katherine N; Meyerholz, David K; Engelhardt, John F (2016) Pancreatic pathophysiology in cystic fibrosis. J Pathol 238:311-20
Li, Xiaopeng; Tang, Xiao Xiao; Vargas Buonfiglio, Luis G et al. (2016) Electrolyte transport properties in distal small airways from cystic fibrosis pigs with implications for host defense. Am J Physiol Lung Cell Mol Physiol 310:L670-9
Shah, Viral S; Meyerholz, David K; Tang, Xiao Xiao et al. (2016) Airway acidification initiates host defense abnormalities in cystic fibrosis mice. Science 351:503-7
Tang, Xiao Xiao; Ostedgaard, Lynda S; Hoegger, Mark J et al. (2016) Acidic pH increases airway surface liquid viscosity in cystic fibrosis. J Clin Invest 126:879-91
Abou Alaiwa, Mahmoud H; Launspach, Janice L; Sheets, Kelsey A et al. (2016) Repurposing tromethamine as inhaled therapy to treat CF airway disease. JCI Insight 1:
Meyerholz, David K; Lambertz, Allyn M; McCray Jr, Paul B (2016) Dipeptidyl Peptidase 4 Distribution in the Human Respiratory Tract: Implications for the Middle East Respiratory Syndrome. Am J Pathol 186:78-86
Hornick, Andrew L; Li, Ni; Oakland, Mayumi et al. (2016) Human, Pig, and Mouse Interferon-Induced Transmembrane Proteins Partially Restrict Pseudotyped Lentiviral Vectors. Hum Gene Ther 27:354-62
Meyerholz, David K (2016) Lessons learned from the cystic fibrosis pig. Theriogenology 86:427-32

Showing the most recent 10 out of 90 publications