CORE B: The Clinical Ascertainment and Phenotyping Core will establish the clinical and phenotypic classifications which are pivotal for the Program. Core B will also manage all of the biologic resources for the Program. The goal of Core B is to recruit patients and members of families with familial interstitial pneumonia (FIP), to characterize all phenotypes, and obtain the specimens needed to conduct all studies ofthe Program. Core B personnel and facilities will perform the following key functions: 1) patient and family ascertainment, 2) recruitment, 3) phenotyping, 4) database maintenance, 5) specimen acquisition and banking, 6) specimen retrieval and distribution, 7) telomere length analyses. Core B study coordinators at all 3 sites (Vanderbilt, National Jewish/Univ Colorado, and Duke) enter and maintain a detailed database in Progeny Software (Wolfville, Nova Scotia), including pedigree information on each family and phenotype on each individual. Core B laboratory personnel will be responsible for specimen processing, cell culture, storage and management of specimen data. Core B will provide biomaterials (serum, lymphocytes, lymphoblastoids, lung tissue) and high throughput molecular biology services (telomere length analyses) to Program investigators.

Public Health Relevance

Interstitial lung diseases, including the idiopathic interstitial pneumonias, are a substantial cause of morbidity and mortality for which there are no effective treatments. In this program, we will study the genetics and underlying biological mechanisms that lead to progressive fibrosis in the lungs. Our integrated approach will lead to new concepts in disease pathogenesis and identification of novel treatment strategies.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL092870-05
Application #
8598503
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
5
Fiscal Year
2014
Total Cost
$344,567
Indirect Cost
$97,781
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Young, Lisa R; Gulleman, Peter M; Short, Chelsi W et al. (2016) Epithelial-macrophage interactions determine pulmonary fibrosis susceptibility in Hermansky-Pudlak syndrome. JCI Insight 1:e88947
Benjamin, John T; van der Meer, Riet; Im, Amanda M et al. (2016) Epithelial-Derived Inflammation Disrupts Elastin Assembly and Alters Saccular Stage Lung Development. Am J Pathol 186:1786-800
Saxon, Jamie A; Cheng, Dong-Sheng; Han, Wei et al. (2016) p52 Overexpression Increases Epithelial Apoptosis, Enhances Lung Injury, and Reduces Survival after Lipopolysaccharide Treatment. J Immunol 196:1891-9
Fingerlin, Tasha E; Zhang, Weiming; Yang, Ivana V et al. (2016) Genome-wide imputation study identifies novel HLA locus for pulmonary fibrosis and potential role for auto-immunity in fibrotic idiopathic interstitial pneumonia. BMC Genet 17:74
Nakano, Yasushi; Yang, Ivana V; Walts, Avram D et al. (2016) MUC5B Promoter Variant rs35705950 Affects MUC5B Expression in the Distal Airways in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 193:464-6
Claar, Dru D; Larkin, Emma K; Bastarache, Lisa et al. (2016) A Phenome-Wide Association Study Identifies a Novel Asthma Risk Locus Near TERC. Am J Respir Crit Care Med 193:98-100
Mathai, Susan K; Pedersen, Brent S; Smith, Keith et al. (2016) Desmoplakin Variants Are Associated with Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 193:1151-60
Kropski, Jonathan A; Young, Lisa R; Cogan, Joy D et al. (2016) Genetic Evaluation and Testing of Patients and Families with Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med :
Richmond, Bradley W; Brucker, Robert M; Han, Wei et al. (2016) Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency. Nat Commun 7:11240
Nevel, Rebekah J; Garnett, Errine T; Worrell, John A et al. (2016) Persistent Lung Disease in Adults with NKX2.1 Mutation and Familial Neuroendocrine Cell Hyperplasia of Infancy. Ann Am Thorac Soc 13:1299-304

Showing the most recent 10 out of 53 publications