Core C: Administrative Core The Administrative Core serves all ofthe projects in this Program and will serve as a cornerstone ofthe cardiovascular community at the University of Washington. The administrative staff coordinates the scientific meetings that permit investigators to share d&ta, troubleshoot technical problems and plan new experiments. The Core manages the cardiovascular seminar series (Cardiovascular Breakfast Club) and the South Lake Union seminaries, weekly forums where trainees present works in progress, and senior scientists from the Seattle region and beyond present formal seminars. Fiscal support for post-award grant management is provided through the Administrative Core, providing Project Leaders with regular budget summaries and analysis of spending trends, as well as assuring financial compliance with federal and institutional financial guidelines. Administrative Core staff work with project leaders to facilitate compliance with animal welfare, embryonic stem cell research oversight and environmental health and safety policies. The Administrative Core is charged with planning the annual PPG retreat, which is attended by one member of the external : advisory board on a rotating basis. At the PPG retreat the project leaders, staff and trainees review progress toward the Program's aims and chart new directions. Finally, the Administrative Core staff assists the Principal Investigator in the day-to-day operations of the program.:

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
1P01HL094374-01A1
Application #
7806068
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2010-06-01
Project End
2015-05-31
Budget Start
2010-06-01
Budget End
2011-05-31
Support Year
1
Fiscal Year
2010
Total Cost
$167,498
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Liu, Yen-Wen; Chen, Billy; Yang, Xiulan et al. (2018) Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat Biotechnol 36:597-605
Hofsteen, Peter; Robitaille, Aaron Mark; Strash, Nicholas et al. (2018) ALPK2 Promotes Cardiogenesis in Zebrafish and Human Pluripotent Stem Cells. iScience 2:88-100
Neidig, Lauren E; Weinberger, Florian; Palpant, Nathan J et al. (2018) Evidence for Minimal Cardiogenic Potential of Stem Cell Antigen 1-Positive Cells in the Adult Mouse Heart. Circulation 138:2960-2962
Leonard, Andrea; Bertero, Alessandro; Powers, Joseph D et al. (2018) Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. J Mol Cell Cardiol 118:147-158
Hansen, Katrina J; Laflamme, Michael A; Gaudette, Glenn R (2018) Development of a Contractile Cardiac Fiber From Pluripotent Stem Cell Derived Cardiomyocytes. Front Cardiovasc Med 5:52
Eschenhagen, Thomas; Bolli, Roberto; Braun, Thomas et al. (2017) Cardiomyocyte Regeneration: A Consensus Statement. Circulation 136:680-686
Hansen, Katrina J; Favreau, John T; Gershlak, Joshua R et al. (2017) Optical Method to Quantify Mechanical Contraction and Calcium Transients of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Tissue Eng Part C Methods 23:445-454
Palpant, Nathan J; Wang, Yuliang; Hadland, Brandon et al. (2017) Chromatin and Transcriptional Analysis of Mesoderm Progenitor Cells Identifies HOPX as a Regulator of Primitive Hematopoiesis. Cell Rep 20:1597-1608
Palpant, Nathan J; Pabon, Lil; Friedman, Clayton E et al. (2017) Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat Protoc 12:15-31
Yang, Xiulan; Murry, Charles E (2017) One Stride Forward: Maturation and Scalable Production of Engineered Human Myocardium. Circulation 135:1848-1850

Showing the most recent 10 out of 93 publications