The purpose of the Microscopy and Histology Core (Core B) is to provide facilities, resources, training and support to participants of the PPG for brightfield and fluorescence imaging as experimental tools to visualize and localize reactive oxygen species (ROS), inflammatory signaling components and inflammatory cells in cardiovascular tissue in humans and animal models of disease. The facilities of the Microscopy and Histology Core provide for tissue processing and histological preparations, immunohistochemical and immunocytochemical imaging, and laser scanning confocal microscopy (LSCM) imaging. The Microscopy and Histology Core staff will offer supervision, maintenance, training and support for the microscopes, tissue processing equipment, computers and image analysis software. Finally, experienced and skilled imaging experts on the staff will provide consultative services for planning and evaluating experiments. Thus the addition of the Microscopy and Histology Core facility will significantly enhance the ability of project leaders to visualize the locations of ROS production, signaling proteins or inflammatory cell invasion within tissues under a variety of experimental or pathological conditions. Importantly, these morphological data will be correlated with other more quantitative methods, such as electron spin resonance (ESR) spectroscopy to measure ROS (in Core C) and immunoblotting to measure expression of proteins within cells or tissues.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL095070-04
Application #
8380237
Study Section
Special Emphasis Panel (ZHL1-PPG-A)
Project Start
Project End
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
4
Fiscal Year
2012
Total Cost
$143,570
Indirect Cost
$51,007
Name
Emory University
Department
Type
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Yeligar, Samantha M; Kang, Bum-Yong; Bijli, Kaiser M et al. (2017) PPAR? Regulates Mitochondrial Structure and Function and HPASMC Proliferation. Am J Respir Cell Mol Biol :
Caroti, Courtney M; Ahn, Hyunhee; Salazar, Hector F et al. (2017) A Novel Technique for Accelerated Culture of Murine Mesenchymal Stem Cells that Allows for Sustained Multipotency. Sci Rep 7:13334
Kim, Chan Woo; Pokutta-Paskaleva, Anastassia; Kumar, Sandeep et al. (2017) Disturbed Flow Promotes Arterial Stiffening Through Thrombospondin-1. Circulation 136:1217-1232
Kumar, Sandeep; Kang, Dong-Won; Rezvan, Amir et al. (2017) Accelerated atherosclerosis development in C57Bl6 mice by overexpressing AAV-mediated PCSK9 and partial carotid ligation. Lab Invest 97:935-945
Feng, Shuang; Bowden, Neil; Fragiadaki, Maria et al. (2017) Mechanical Activation of Hypoxia-Inducible Factor 1? Drives Endothelial Dysfunction at Atheroprone Sites. Arterioscler Thromb Vasc Biol 37:2087-2101
Xu, Qian; Huff, Lauren P; Fujii, Masakazu et al. (2017) Redox regulation of the actin cytoskeleton and its role in the vascular system. Free Radic Biol Med 109:84-107
Hammadah, Muhammad; Al Mheid, Ibhar; Wilmot, Kobina et al. (2017) Telomere Shortening, Regenerative Capacity, and Cardiovascular Outcomes. Circ Res 120:1130-1138
Hu, Shuhong; Liu, Yifei; You, Tao et al. (2017) Vascular Semaphorin 7A Upregulation by Disturbed Flow Promotes Atherosclerosis Through Endothelial ?1 Integrin. Arterioscler Thromb Vasc Biol :
Heath, Jack M; Fernandez Esmerats, Joan; Khambouneheuang, Lucky et al. (2017) Mechanosensitive microRNA-181b Regulates Aortic Valve Endothelial Matrix Degradation by Targeting TIMP3. Cardiovasc Eng Technol :
Hernandes, Marina S; Lass├Ęgue, Bernard; Griendling, Kathy K (2017) Polymerase ?-interacting Protein 2: A Multifunctional Protein. J Cardiovasc Pharmacol 69:335-342

Showing the most recent 10 out of 111 publications