Mitochondria are dynamic organelles that continually move and re-shape through mitochondrial fusion and fission, two highly regulated processes that control mitochondrial morphology and ensure mitochondrial function, integrity and oxidative damage repair. Recently, the identity of some of the proteins involved in mitochondrial dynamics in mammalian cells has started to unveil. Mutations in genes encoding for some of these proteins have been shown to be responsible for several human diseases and cellular functions. In fact, mitochondrial dynamics and cell cycle are coupled, and the rate of fusion and fission is regulated during the different phases of the cell cycle, permitting appropriate phase progression and distribution of mitochondria in daughter cells during mitosis. Our group recently identified the polymerase delta interacting protein 2 (Poldip2) as a novel positive regulator of Nox4, and our new preliminary data suggest that Poldip2 controls the expression of the Mitochondria-Localized Glutamic Acid-Rich Protein (MGARP), a protein responsible for mitochondrial movement along the microtubules. These data raise the interesting possibility that Poldip2 participates in the regulation of mitochondrial movement and dynamics, and therefore cell bioenergetics. In this proposal, we will test the hypothesis that Poldip2 controls mitochondrial fission through the regulation of MGARP expression, which subsequently impacts cell cycle progression and proliferation. To address this problem, we will first determine the mechanism by which Poldip2 regulates mitochondrial dynamics. In the second aim, we will establish the functional consequences of Poldip2-mediated regulation of mitochondrial dynamics, focusing on mitochondrial damage repair and oxidative phosphorylation (OXPHOS) capacity and their impact in cell cycle progression. Because VSMC proliferation is known to be a critical component of atherosclerosis, our last aim will be devoted to investigating the role of the Poldip2/MGARP pathway in a model of partial ligation-induced atherosclerosis using inducible smooth muscle specific Poldip2 knockout mice on an ApoE-/- background. This research program will advance our understanding of the interface between mitochondrial dynamics and cell cycle progression, and will provide important insight into the role of two novel proteins in vascular pathology that may represent new targets for intervention.

Public Health Relevance

Abnormal vascular smooth muscle cell (VSMC) proliferation plays an important role in the pathogenesis of atherosclerosis, and during proliferation, VSMCs must adjust bioenergetics through the regulation of mitochondrial dynamics and activity. This project is designed to test the role of two recently identified proteins, polymerase-delta interacting protein (Poldip2) and mitochondria-localized glutamic acid-rich protein (MGARP), in controlling mitochondrial partitioning during cell division and consequently cell proliferation. We will determine how Poldip2 regulates mitochondrial dynamics, investigate the mechanisms by which Poldip2- mediated regulation of mitochondrial dynamics affects cell growth and bioenergetics, and examine the role of Poldip2/MGARP pathway in atherosclerosis.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL095070-08
Application #
9271230
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Hasan, Ahmed AK
Project Start
Project End
Budget Start
2017-05-01
Budget End
2018-04-30
Support Year
8
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Emory University
Department
Type
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Yeligar, Samantha M; Kang, Bum-Yong; Bijli, Kaiser M et al. (2017) PPAR? Regulates Mitochondrial Structure and Function and HPASMC Proliferation. Am J Respir Cell Mol Biol :
Caroti, Courtney M; Ahn, Hyunhee; Salazar, Hector F et al. (2017) A Novel Technique for Accelerated Culture of Murine Mesenchymal Stem Cells that Allows for Sustained Multipotency. Sci Rep 7:13334
Kim, Chan Woo; Pokutta-Paskaleva, Anastassia; Kumar, Sandeep et al. (2017) Disturbed Flow Promotes Arterial Stiffening Through Thrombospondin-1. Circulation 136:1217-1232
Kumar, Sandeep; Kang, Dong-Won; Rezvan, Amir et al. (2017) Accelerated atherosclerosis development in C57Bl6 mice by overexpressing AAV-mediated PCSK9 and partial carotid ligation. Lab Invest 97:935-945
Feng, Shuang; Bowden, Neil; Fragiadaki, Maria et al. (2017) Mechanical Activation of Hypoxia-Inducible Factor 1? Drives Endothelial Dysfunction at Atheroprone Sites. Arterioscler Thromb Vasc Biol 37:2087-2101
Xu, Qian; Huff, Lauren P; Fujii, Masakazu et al. (2017) Redox regulation of the actin cytoskeleton and its role in the vascular system. Free Radic Biol Med 109:84-107
Hammadah, Muhammad; Al Mheid, Ibhar; Wilmot, Kobina et al. (2017) Telomere Shortening, Regenerative Capacity, and Cardiovascular Outcomes. Circ Res 120:1130-1138
Hu, Shuhong; Liu, Yifei; You, Tao et al. (2017) Vascular Semaphorin 7A Upregulation by Disturbed Flow Promotes Atherosclerosis Through Endothelial ?1 Integrin. Arterioscler Thromb Vasc Biol :
Heath, Jack M; Fernandez Esmerats, Joan; Khambouneheuang, Lucky et al. (2017) Mechanosensitive microRNA-181b Regulates Aortic Valve Endothelial Matrix Degradation by Targeting TIMP3. Cardiovasc Eng Technol :
Hernandes, Marina S; Lass├Ęgue, Bernard; Griendling, Kathy K (2017) Polymerase ?-interacting Protein 2: A Multifunctional Protein. J Cardiovasc Pharmacol 69:335-342

Showing the most recent 10 out of 111 publications