The prime functions of the Administration Core will be to coordinate program management and all program related activities. For example, program activities will include a bi-weekly research-in-progress meeting, an Annual Internal Program Retreat to include investigators and the Internal Advisory Committee, an External Review by the External Advisory Committee, and an annual seminar by one guest per project per year. The administrative Core will also provide fiscal support in the form of managing the overall budget, organize purchasing, prepare and monitor regular fiscal reports for investigators, providing for publication costs and making travel arrangements for investigators. The administrative Core will also provide scheduling services for regular meetings among the project leaders and personnel as well as scheduling and travel arrangements for yeariy visits from the external advisory board. This Core will act as a hub to service the general computing, networking and communication needs of the Program. This Core will maintain a public website for distribution of research news and program activities. This Core will maintain a network of word processing systems, teleconferencing equipment, photocopier and fax access, image scanners and poster production. This Core will oversee and provide for the update of software needed in the Program, maintain a software library, and provide a resource for the computing systems. Finally, the Administrative Core will also act as liaison with the University of Missouri, Office of Research and with NIH regarding all policy and procedural issues pertaining to the PPG. This Core will provide services that are essential for the overall function and scientific integration of the Program Project Grant. All projects will rely on the services provided by this Core.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL095486-04
Application #
8462670
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
4
Fiscal Year
2013
Total Cost
$182,526
Indirect Cost
$62,105
Name
University of Missouri-Columbia
Department
Type
DUNS #
153890272
City
Columbia
State
MO
Country
United States
Zip Code
65211
Sehgel, Nancy L; Sun, Zhe; Hong, Zhongkui et al. (2015) Augmented vascular smooth muscle cell stiffness and adhesion when hypertension is superimposed on aging. Hypertension 65:370-7
Hong, Zhongkui; Sun, Zhe; Li, Min et al. (2014) Vasoactive agonists exert dynamic and coordinated effects on vascular smooth muscle cell elasticity, cytoskeletal remodelling and adhesion. J Physiol 592:1249-66
Kalogeris, Theodore; Bao, Yimin; Korthuis, Ronald J (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2:702-14
Sun, Zhe; Parrish, Alan R; Hill, Michael A et al. (2014) N-cadherin, a vascular smooth muscle cell-cell adhesion molecule: function and signaling for vasomotor control. Microcirculation 21:208-18
Kalogeris, Theodore J; Baines, Christopher; Korthuis, Ronald J (2014) Adenosine prevents TNF?-induced decrease in endothelial mitochondrial mass via activation of eNOS-PGC-1? regulatory axis. PLoS One 9:e98459
Nourian, Zahra; Li, Min; Leo, M Dennis et al. (2014) Large conductance Ca2+-activated K+ channel (BKCa) ?-subunit splice variants in resistance arteries from rat cerebral and skeletal muscle vasculature. PLoS One 9:e98863
Fairfax, Seth T; Holwerda, Seth W; Credeur, Daniel P et al. (2013) The role of ýý-adrenergic receptors in mediating beat-by-beat sympathetic vascular transduction in the forearm of resting man. J Physiol 591:3637-49
Korthuis, Ronald J; Kalogeris, Theodore (2013) TRPing up reperfusion: neutrophil TRPM2 channels exacerbate necrosis and contractile dysfunction in post-ischaemic myocardium. Cardiovasc Res 97:197-9
Hong, Zhongkui; Ersoy, Ilker; Sun, Mingzhai et al. (2013) Influence of membrane cholesterol and substrate elasticity on endothelial cell spreading behavior. J Biomed Mater Res A 101:1994-2004
Fairfax, Seth T; Padilla, Jaume; Vianna, Lauro C et al. (2013) Spontaneous bursts of muscle sympathetic nerve activity decrease leg vascular conductance in resting humans. Am J Physiol Heart Circ Physiol 304:H759-66

Showing the most recent 10 out of 27 publications