Niche-induced signaiing in HSCP transplantation. Children's Hospital Project Leader: Leslie E. Silberstein, M.D. Professor of Pathology, Harvard Medical School Director, Joint Program in Transfusion Medicine Children's Hospital Boston, Brigham and Women's Hospital, Dana-Farber Cancer Institute Director, Center for Human Cell Therapy, Immune Disease Institute Hematopoietic stem and progenitor cells (HSCP) can be induced to leave the BM, e.g. mobilization, and such mobilized hematopoietic stem cell (HSC) enriched cell populations when infused intravenously rapidly home back to the marrow and transmigrate into the extravascular compartment where they lodge in specialized niches. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase, whose function has been well studied in fibroblasts, where it plays an important role in cell adhesion, survival and motility. Our own studies and those of others, suggest that also in hematopoietic cells Fak functions as a key integrator of external/BM niche signals such as adhesion molecules, stem cell factor and CXCL12. Due to early embryonic lethality (E.S) of Fak'^'mice, homozygous Fak fl/fl mice were bred to the IFN-inducible Mxl-Cre transgene that elicits widespread efficient gene deletion throughout the hematopoietic system, including HSCs. Conditional Fak deletion in the hematopoietic compartment results in an expanded HSC population with a two-fold, long-term enhanced engraftment of at least 20 weeks duration, e.g. Mxl-Cre Fak deleted phenotype. We hypothesize that the Mxl-Cre Fak deleted phenotype results from perturbations of the interactions between HSCs and the BM microenvironment. However, it is unclear how Fak signaling affects HSC homeostasis/engraftment and thus three aims are proposed to explore the following, non-mutually exclusive possible mechanisms.
Aim 1 will determine if FAK regulates HSC number and function;
Aim 2 will assess the relative contribution of Fak inactivation in HSC and niche cells to the hematopoietic phenotype of Mxl-Cre Fak fl/fl mice (Mx^-Cre Fak deleted phenotype);
and Aim 3 will determine if Fak regulates HSC distribution and/or lodgement in bone marrow. A better understanding ofthe molecular pathways controlling HSC homeostasis should lead to new translational approaches to enhance ex vivo expansion and improve transplantation efficiency of clinically relevant HSCP populations. Such strategies are especially needed in settings where the quantity and/or quality of HSCs affect transplant efficiency, i.e. HSCs from placental/umbilical cord blood or HSCs from individuals in whom it is difficult to isolate adequate numbers of HSCs for therapy. Improvement in the time to engraftment would limit the morbidity of transplant recipients and diminish the need for blood products to manage cytopenias in the immediate post-transplant period.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Children's Hospital Boston
United States
Zip Code
Luo, Hongbo R (2014) A dual regulator of neutrophil recruitment. Blood 123:1983-5
Ueno, Shikiko; Lu, Jiayun; He, Jie et al. (2014) Aberrant expression of SALL4 in acute B cell lymphoblastic leukemia: mechanism, function, and implication for a potential novel therapeutic target. Exp Hematol 42:307-316.e8
Loison, Fabien; Zhu, Haiyan; Karatepe, Kutay et al. (2014) Proteinase 3-dependent caspase-3 cleavage modulates neutrophil death and inflammation. J Clin Invest 124:4445-58
Jo, Hakryul; Loison, Fabien; Luo, Hongbo R (2014) Microtubule dynamics regulates Akt signaling via dynactin p150. Cell Signal 26:1707-16
Gao, Chong; Dimitrov, Todor; Yong, Kol Jia et al. (2013) Targeting transcription factor SALL4 in acute myeloid leukemia by interrupting its interaction with an epigenetic complex. Blood 121:1413-21
Yong, Kol Jia; Gao, Chong; Lim, Joline S J et al. (2013) Oncofetal gene SALL4 in aggressive hepatocellular carcinoma. N Engl J Med 368:2266-76
Nombela-Arrieta, Cesar; Pivarnik, Gregory; Winkel, Beatrice et al. (2013) Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 15:533-43
Li, Ailing; Yang, Youyang; Gao, Chong et al. (2013) A SALL4/MLL/HOXA9 pathway in murine and human myeloid leukemogenesis. J Clin Invest 123:4195-207
Gao, Chong; Kong, Nikki R; Li, Ailing et al. (2013) SALL4 is a key transcription regulator in normal human hematopoiesis. Transfusion 53:1037-49
Lu, Jiayun; Sun, Yan; Nombela-Arrieta, Cesar et al. (2012) Fak depletion in both hematopoietic and nonhematopoietic niche cells leadsýýtoýýhematopoietic stem cell expansion. Exp Hematol 40:307-17.e3

Showing the most recent 10 out of 15 publications