1.1 Introduction The principal goal of the Experimental Animal Core is to house mice in the more cost effective and efficient manner in a central facility for all three of the proposed projects. The generation of transgenic mice has proven to be a very powerful tool in answering biologic questions, especially those directly relevant to human disease. However, animal modeling has become increasingly complex with many variables to consider including mouse strain, the selection of tissue specific promoters to modulate targeted gene expression, as well as overall expense. The function of Core B is to serve as a centralized resource to house and maintain the animals and to keep the overall costs of experimental animals to a minimum for the program. In addition. Dr. John Manis will act as a scientific resource to the investigators in planning for the generation of compound mutant mice with multiple genotypes for experimental analysis. Various genetically engineered animals and normal control mouse strains that will be employed in the scientific studies of the program are housed in the core facility, and used during the course of this proposal. Each mouse strain will be housed and generated in direct proportion to the need ofthe investigator, with a breeding and management algorithm using a specialized software based method (Granite).

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL095489-05
Application #
8694075
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Children's Hospital Boston
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02115
Zhang, Xue; Liu, Peng; Zhang, Christie et al. (2017) Positive Regulation of Interleukin-1? Bioactivity by Physiological ROS-Mediated Cysteine S-Glutathionylation. Cell Rep 20:224-235
Zhu, Haiyan; Kwak, Hyun-Jeong; Liu, Peng et al. (2017) Reactive Oxygen Species-Producing Myeloid Cells Act as a Bone Marrow Niche for Sterile Inflammation-Induced Reactive Granulopoiesis. J Immunol 198:2854-2864
Teng, Yan; Luo, Hongbo R; Kambara, Hiroto (2017) Heterogeneity of neutrophil spontaneous death. Am J Hematol 92:E156-E159
Tatetsu, Hiro; Kong, Nikki R; Chong, Gao et al. (2016) SALL4, the missing link between stem cells, development and cancer. Gene 584:111-9
Li, Zhenzhen; Ye, Zhou; Zhang, Xiaolong et al. (2016) E1A-engineered human umbilical cord mesenchymal stem cells as carriers and amplifiers for adenovirus suppress hepatocarcinoma in mice. Oncotarget 7:51815-51828
Bajrami, Besnik; Zhu, Haiyan; Kwak, Hyun-Jeong et al. (2016) G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling. J Exp Med 213:1999-2018
Damnernsawad, Alisa; Kong, Guangyao; Wen, Zhi et al. (2016) Kras is Required for Adult Hematopoiesis. Stem Cells 34:1859-71
Wang, F; Gao, C; Lu, J et al. (2016) Leukemic survival factor SALL4 contributes to defective DNA damage repair. Oncogene 35:6087-6095
Ciuculescu, Marioara F; Park, Shin-Young; Canty, Kimberly et al. (2015) Perivascular deletion of murine Rac reverses the ratio of marrow arterioles and sinusoid vessels and alters hematopoiesis in vivo. Blood 125:3105-13
Luo, Hongbo R; Mondal, Subhanjan (2015) Molecular control of PtdIns(3,4,5)P3 signaling in neutrophils. EMBO Rep 16:149-63

Showing the most recent 10 out of 39 publications