Obstructive sleep apnea (OSA) is a common sleep disorder that is characterized by frequent arousals from sleep caused by the collapse of the upper ainway and resulting hypercarbia/hypoxemia. Frequent arousals from sleep interfere with the architecture of normal sleep, reduce deep sleep, and impair the restorative/ cognitive benefits of sleep. Despite the importance of preventing arousals from sleep in order to improve sleep quality for millions of Americans with OSA, very little is known about the neural control mechanisms that mediate arousals during OSA. Recent work using anatomical methods suggests that the brainstem glutamatergic neurons of the parabrachial complex (PB/PC), which receive visceral and respiratory input, are important for arousal during OSA via their projections to the basal forebrain (BF), a region containing cortically projecting &wakefulness promoting neurons. However, these findings have not yet been complemented by an essential element, the recording of neurons in this circuit. This project addresses this need by using tetrode/multiple single unit recordings of PB/PC and BF neurons during natural sleep cycles and during arousals from both slow wave sleep (non-REM sleep) and REM sleep provoked by hypercarbia, thus mimicking the stimuli from OSA. To model the arousals of sleep apnea, rats will be exposed to 10% carbon dioxide to awaken them from sleep. We hypothesize that the cortical activation seen in the arousals of sleep apnea is mediated by the projection from PB/PC to BF. Since PB neurons receive input about levels of carbon dioxide and respiratory effort, we predict that PB/PC neurons will exhibit an increase in discharge activity that precedes cortical activation when the arousals from sleep are produced by carbon dioxide, but not when the arousals are spontaneous, or induced by acoustic stimulation. Reversible muscimol inactivation of PB/PC will further test the role of PB/PC in arousals. We predict that all types of arousals from sleep &the accompanying cortical activation will correlate with the elevated discharge of BF wakefulness promoting neurons. This project's precise information on the timing of neuronal activation relative to hypercarbia will complement and enhance the other projects of this program project grant.

Public Health Relevance

Sleep, an essential part of human life, is needed for optimal health &performance. Millions of (Americans suffer from disorders, such as sleep apnea, in which frequent arousals from sleep lead to excessive daytime sleepiness &cognitive impairments. This proposal investigates brain mechanisms underiying arousals from sleep in order to provide a rational basis for the development of therapies to reduce arousals from sleep.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL095491-04
Application #
8435429
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
4
Fiscal Year
2013
Total Cost
$388,465
Indirect Cost
$92,950
Name
Beth Israel Deaconess Medical Center
Department
Type
DUNS #
071723621
City
Boston
State
MA
Country
United States
Zip Code
02215
Yokota, Shigefumi; Kaur, Satvinder; VanderHorst, Veronique G et al. (2015) Respiratory-related outputs of glutamatergic, hypercapnia-responsive parabrachial neurons in mice. J Comp Neurol 523:907-20
Eckert, Danny J; Malhotra, Atul; Wellman, Andrew et al. (2014) Trazodone increases the respiratory arousal threshold in patients with obstructive sleep apnea and a low arousal threshold. Sleep 37:811-9
Pittman-Polletta, Benjamin; Hsieh, Wan-Hsin; Kaur, Satvinder et al. (2014) Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions. J Neurosci Methods 226:15-32
Sands, Scott A; Eckert, Danny J; Jordan, Amy S et al. (2014) Enhanced upper-airway muscle responsiveness is a distinct feature of overweight/obese individuals without sleep apnea. Am J Respir Crit Care Med 190:930-7
Shah, Ravi V; Abbasi, Siddique A; Heydari, Bobak et al. (2014) Obesity and sleep apnea are independently associated with adverse left ventricular remodeling and clinical outcome in patients with atrial fibrillation and preserved ventricular function. Am Heart J 167:620-6
Bakker, Jessie P; Edwards, Bradley A; Gautam, Shiva P et al. (2014) Blood pressure improvement with continuous positive airway pressure is independent of obstructive sleep apnea severity. J Clin Sleep Med 10:365-9
Yang, Chun; McKenna, James T; Zant, Janneke C et al. (2014) Cholinergic neurons excite cortically projecting basal forebrain GABAergic neurons. J Neurosci 34:2832-44
McSharry, David G; Saboisky, Julian P; Deyoung, Pam et al. (2014) Physiological mechanisms of upper airway hypotonia during REM sleep. Sleep 37:561-9
Zielinski, Mark R; Kim, Youngsoo; Karpova, Svetlana A et al. (2014) Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression. Neurosci Lett 580:27-31
Weng, F J; Williams, R H; Hawryluk, J M et al. (2014) Carbachol excites sublaterodorsal nucleus neurons projecting to the spinal cord. J Physiol 592:1601-17

Showing the most recent 10 out of 76 publications