The overall focus of this PPG is on autonomic and vascular mechanisms engaged by low skeletal muscle oxygen tension, and their role in disease. The goal of Project 4 is to examine the effects of acute and intermittent hypoxic stress, two fundamental and prevalent types of physiologic stress, on circulatory control. Hypoxia is common in smokers, and intermittent hypoxia is characteristic of obstructive sleep apnea. Regional skeletal muscle hypoxia (ischemia) is also present during exercise and is pronounced in peripheral arterial disease. All of these conditions are marked by increased cardiovascular risk. It is well established that hypoxia and ischemia exert their effects on the circulation via integrated and at times competing influences on the autonomic nervous system and local metabolic control. Preliminary data from our laboratory demonstrate that in healthy humans intermittent hypoxia leads to sustained sympathetic activation. Because the antioxidant ascorbic acid attenuates the sympathoexcitatory effect of intermittent hypoxia, oxidative stress may be involved. We also found that sympathetic reflex responses to hypoxia are enhanced in patients with sleep apnea and are normalized in part by continuous positive airway pressure therapy. Similarly, in preliminary studies, ascorbic acid appears to attenuate the chemoreflex sensitizing effect of intermittent hypoxia in healthy humans. Despite chronically increased sympathetic activity, the vasodilation induced by acute hypoxia appears to be largely preserved in patients with sleep apnea. Collectively, these findings support the central hypothesis that intermittent hypoxia alters sympathetic activity and reflex function, and evokes compensatory peripheral vascular adaptations, possibly via oxidative stress.
The specific aims of this proposal are to determine whether: (1) experimental intermittent hypoxia alters sympathetic reflex function, and whether this effect can be prevented by ascorbic acid;(2) skeletal muscle vascular adaptations to hypoxic stress are in part dependent on enhanced endothelium-derived hyperpolarizing factor, and is characteristic of nitric oxide deficient states due to enhanced oxidative stress;(3) cigarette smoking is associated with altered neurocirculatory control due to enhanced oxidative stress and is restored in part with ascorbic acid;and (4) reflex vasoconstrictor mechanisms are altered in peripheral arterial disease and act to restrict collateral blood flow in the ischemic limb. The proposed studies expand the scope of our prior work on neurocirculatory regulation during hypoxia and will provide new insight into the mechanisms that link intermittent hypoxia to adverse cardiovascular outcomes.

Public Health Relevance

This research examines mechanisms that control peripheral blood fiow after intermittent or chronic exposure to physiological stress. These mechanisms appear to be disturbed in important ways in highly common. condifions such as obstrucfive sleep apnea, peripheral arterial disease, and in smokers. New insight into these processes will help us better understand how these mechanisms contribute to disease progression and will allow us to design better therapies and preventive measures.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Pennsylvania State University
United States
Zip Code
Stone, Audrey J; Kaufman, Marc P (2015) The exercise pressor reflex and peripheral artery disease. Auton Neurosci 188:69-73
Cui, Jian; Sinoway, Lawrence I (2014) Cardiovascular responses to heat stress in chronic heart failure. Curr Heart Fail Rep 11:139-45
Solaiman, Adil Z; Feehan, Robert P; Chabitnoy, Amy M et al. (2014) Ventilatory responses to chemoreflex stimulation are not enhanced by angiotensin II in healthy humans. Auton Neurosci 183:72-9
Patel, Hardikkumar M; Heffernan, Matthew J; Ross, Amanda J et al. (2014) Sex differences in forearm vasoconstrictor response to voluntary apnea. Am J Physiol Heart Circ Physiol 306:H309-16
Muller, Matthew D; Gao, Zhaohui; Patel, Hardikkumar M et al. (2014) ?-Adrenergic blockade enhances coronary vasoconstrictor response to forehead cooling. Am J Physiol Heart Circ Physiol 306:H910-7
Copp, Steven W; Stone, Audrey J; Yamauchi, Katsuya et al. (2014) Effects of peripheral and spinal ?-opioid receptor stimulation on the exercise pressor reflex in decerebrate rats. Am J Physiol Regul Integr Comp Physiol 307:R281-9
Yamauchi, Katsuya; Tsuchimochi, Hirotsugu; Stone, Audrey J et al. (2014) Increased dietary salt intake enhances the exercise pressor reflex. Am J Physiol Heart Circ Physiol 306:H450-4
Li, Jianhua; Xing, Jihong; Lu, Jian (2014) Nerve Growth Factor, Muscle Afferent Receptors and Autonomic Responsiveness with Femoral Artery Occlusion. J Mod Physiol Res 1:1-18
Muller, Matthew D; Gao, Zhaohui; McQuillan, Patrick M et al. (2014) Coronary responses to cold air inhalation following afferent and efferent blockade. Am J Physiol Heart Circ Physiol 307:H228-35
Yamauchi, Katsuya; Stone, Audrey J; Kaufman, Marc P (2014) Hindlimb venous distention evokes a pressor reflex in decerebrated rats. Physiol Rep 2:

Showing the most recent 10 out of 35 publications