This Program Project (PPG) is re-submitted to the NIH with the central objective of studying the molecular mechanisms of susceptibility or tolerance to short term (constant or intermittent) and long term hypoxia in heart, lung and brain. This PPG has three Projects and two scientific Cores, is based at the University of California San Diego (UCSD) and includes scientists from sister institutions (e.g., the Burnham Institute). It is designed to advance biomedical knowledge and make a high impact on our understanding of the basis of cell and tissue tolerance to hypoxia with the purpose to advance our ability to diagnose and treat disease. As a result of all of our preliminary data, we have formulated a PPG with a two-fold thrust: a) To enhance our understanding of the basic and fundamental mechanisms underlying susceptibility or tolerance of specific cells and tissues to constant or intermittently low O2 in the cardio-respiratory system and b) to render susceptible cells in mammals resistant to these stresses, with the ultimate aim to translate basic mechanisms into clinically useful outcomes. Since every Project in this Program has evidence for considering Notch signaling as a central important pathway in hypoxia, each Project centers on Notch and investigates how Notch interacts with other important modulators of Notch activity, whether it is Toll, HIF1, or insulin receptor. The two Cores will be essential to the PPG since they will carry out specific functions that enhance the quality of the science and experiments, cut costs, fosters synergy between Projects and provide an integrative biological view of gene pathways (Systems biology and Animal Hypoxia Cores). The overall Specific Aims of the PPG are: a) To study the adaptive mechanisms to hypoxia in cardiovascular and respiratory systems at both cellular and molecular levels;b) to study the fundamental genetic mechanisms of tolerance in a Drosophila model;c) to modulate/manipulate molecular mechanisms in mammalian cells/tissues/animals to render them hypoxia-tolerant after learning from a tolerant organism, e.g., the fly;and d) to identify molecular signatures of hypoxia tolerance and susceptibility that may be predictive clinically. We believe that this PPG will have a major impact on our understanding of the cellular and molecular mechanisms that underlie a variety of diseases including obstructive Sleep Apnea and its consequential cardiac and neurologic tissue injury, cardiac hypoxia and cardiac muscle injury, Sickle Cell Disease and cardiovascular, respiratory and neurologic injury as well as COPD and cardio-respiratory consequences.

Agency
National Institute of Health (NIH)
Type
Research Program Projects (P01)
Project #
5P01HL098053-05
Application #
8694076
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Program Officer
Laposky, Aaron D
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Pediatrics
Type
Schools of Medicine
DUNS #
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Hartley, Paul S; Motamedchaboki, Khatereh; Bodmer, Rolf et al. (2016) SPARC-Dependent Cardiomyopathy in Drosophila. Circ Cardiovasc Genet 9:119-29
Díaz-Trelles, Ramón; Scimia, Maria Cecilia; Bushway, Paul et al. (2016) Notch-independent RBPJ controls angiogenesis in the adult heart. Nat Commun 7:12088
Gan, Zhuohui; Fu, Zhenxing; Stowe, Jennifer C et al. (2016) A Protocol to Collect Specific Mouse Skeletal Muscles for Metabolomics Studies. Methods Mol Biol 1375:169-79
Basaran, Kemal Erdem; Villongco, Michael; Ho, Baran et al. (2016) Ibuprofen Blunts Ventilatory Acclimatization to Sustained Hypoxia in Humans. PLoS One 11:e0146087
Azad, Priti; Zhao, Huiwen W; Cabrales, Pedro J et al. (2016) Senp1 drives hypoxia-induced polycythemia via GATA1 and Bcl-xL in subjects with Monge's disease. J Exp Med 213:2729-2744
Pamenter, Mathhew E; Powell, Frank L (2016) Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis. Compr Physiol 6:1345-85
Dewan, Sukriti; McCabe, Kimberly J; Regnier, Michael et al. (2016) Molecular Effects of cTnC DCM Mutations on Calcium Sensitivity and Myofilament Activation-An Integrated Multiscale Modeling Study. J Phys Chem B 120:8264-75
Stobdan, Tsering; Zhou, Dan; Ao-Ieong, Eilleen et al. (2015) Endothelin receptor B, a candidate gene from human studies at high altitude, improves cardiac tolerance to hypoxia in genetically engineered heterozygote mice. Proc Natl Acad Sci U S A 112:10425-30
Guimarães-Camboa, Nuno; Stowe, Jennifer; Aneas, Ivy et al. (2015) HIF1α Represses Cell Stress Pathways to Allow Proliferation of Hypoxic Fetal Cardiomyocytes. Dev Cell 33:507-21
Smith, Kimberly A; Voiriot, Guillaume; Tang, Haiyang et al. (2015) Notch Activation of Ca(2+) Signaling in the Development of Hypoxic Pulmonary Vasoconstriction and Pulmonary Hypertension. Am J Respir Cell Mol Biol 53:355-67

Showing the most recent 10 out of 76 publications