Each of the three laboratories involved in the Program Project will express distinct classes of proteins from serum proteins (ApoAI) to enzymes (LCAT, and MPO) and mutant forms of a subset of these in order to perform subsequent enzymatic assays as described in the Projects and analysis utilizing diverse and sophisticated instrumentation detailed in the Mass Spectrometry and Biophysics Core (Core B). The principal objective ofthe Recombinant Protein Expression and Molecular Cloning Core is to provide a centralized means for high volume protein expression thereby facilitating the relatively sophisticated and diverse biophysical and biological studies on the proteins of interest for each Project, in addition, the Core will also provide molecular cloning/ mutagenesis capabilities to all three Projects. The Core will also function as an educational facility for training members of the Program Project laboratories on ways to optimize protein expression using various strategies and also in the generation of mutants of specific alleles desired for protein expression or for targeting alleles for transgenic mouse production ( CC/CWRU Transgenic mouse Core is located at Case Western Reserve University). Training in the purification of proteins will also be provided by the Core. Centralizing these aspects of the work and training is expected to greatly enhance efficiency and productivity of the scientists participating in each project.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cleveland Clinic Lerner
United States
Zip Code
Tang, W H Wilson; Wang, Zeneng; Shrestha, Kevin et al. (2015) Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail 21:91-6
Grodin, Justin L; Hammadah, Muhammad; Fan, Yiying et al. (2015) Prognostic value of estimating functional capacity with the use of the duke activity status index in stable patients with chronic heart failure. J Card Fail 21:44-50
Grodin, Justin L; Neale, Sarah; Wu, Yuping et al. (2015) Prognostic comparison of different sensitivity cardiac troponin assays in stable heart failure. Am J Med 128:276-82
Tang, W H Wilson; Hazen, Stanley L (2014) The contributory role of gut microbiota in cardiovascular disease. J Clin Invest 124:4204-11
Hartiala, Jaana; Bennett, Brian J; Tang, W H Wilson et al. (2014) Comparative genome-wide association studies in mice and humans for trimethylamine N-oxide, a proatherogenic metabolite of choline and L-carnitine. Arterioscler Thromb Vasc Biol 34:1307-13
Shao, Zhili; Zhang, Renliang; Shrestha, Kevin et al. (2014) Usefulness of elevated urine neopterin levels in assessing cardiac dysfunction and exercise ventilation inefficiency in patients with chronic systolic heart failure. Am J Cardiol 113:1839-43
Brown, J Mark; Hazen, Stanley L (2014) Metaorganismal nutrient metabolism as a basis of cardiovascular disease. Curr Opin Lipidol 25:48-53
Duivenvoorden, Raphaƫl; Tang, Jun; Cormode, David P et al. (2014) A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun 5:3065
Feig, Jonathan E; Hewing, Bernd; Smith, Jonathan D et al. (2014) High-density lipoprotein and atherosclerosis regression: evidence from preclinical and clinical studies. Circ Res 114:205-13
Brown, J Mark; Hazen, Stanley L (2014) Seeking a unique lipid signature predicting cardiovascular disease risk. Circulation 129:1799-803

Showing the most recent 10 out of 79 publications