Core C will utilize the equipment and staff of the existing BRI Histology and Flow Cytometry Cores to provide histological processing, photomicrography, and flow cytometry services for the four Projects described in this proposal. For histology. Core C will provide high-throughput equipment for tissue processing, embedding, sectioning, and staining with conventional dyes, antibodies, and nucleic acid probes. For photomicrography, Core C will provide one confocal microscope and five digital camera-equipped conventional microscopes with complementary imaging capabilities. For flow cytometry, Core C will incorporate a variety of multifeatured cell sorting instruments. With regard to human resources, Core C will have experienced staff who will provide Project personnel with a full range of histological prep, consultation, and instrument training services

Public Health Relevance

The histology, photomicrography, and flow cytometry services provided by Core C will be essential to all four Projects. Histological processing and photomicrography will be necessary to evaluate the responses of lungs to viral and bacterial infection and to TSLP-induced inflammation according to the following parameters: (1) fibrosis and other pathology, (2) expression of specific extracellular matrix components and matrix metalloproteinases, and (3) lymphocyte/macrophage trafficking. Flow cytometry services will be used extensively by Projects 2 and 4 to sort immune cell populations for phenotypic analyses and for adoptive transfer experiments.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Benaroya Research Institute at Virginia Mason
United States
Zip Code
Wilson, S S; Tocchi, A; Holly, M K et al. (2015) A small intestinal organoid model of non-invasive enteric pathogen-epithelial cell interactions. Mucosal Immunol 8:352-61
Giannandrea, Matthew; Parks, William C (2014) Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech 7:193-203
Chang, Mary Y; Tanino, Yoshinori; Vidova, Veronika et al. (2014) A rapid increase in macrophage-derived versican and hyaluronan in infectious lung disease. Matrix Biol 34:1-12
Smigiel, Kate S; Richards, Elizabeth; Srivastava, Shivani et al. (2014) CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets. J Exp Med 211:121-36
Srivastava, Shivani; Koch, Meghan A; Pepper, Marion et al. (2014) Type I interferons directly inhibit regulatory T cells to allow optimal antiviral T cell responses during acute LCMV infection. J Exp Med 211:961-74
Srivastava, Shivani; Koch, Lisa K; Campbell, Daniel J (2014) IFN?R signaling in effector but not regulatory T cells is required for immune dysregulation during type I IFN-dependent inflammatory disease. J Immunol 193:2733-42
Gharib, Sina A; Johnston, Laura K; Huizar, Isham et al. (2014) MMP28 promotes macrophage polarization toward M2 cells and augments pulmonary fibrosis. J Leukoc Biol 95:9-18
Smigiel, Kate S; Srivastava, Shivani; Stolley, J Michael et al. (2014) Regulatory T-cell homeostasis: steady-state maintenance and modulation during inflammation. Immunol Rev 259:40-59
Chang, Mary Y; Tanino, Yoshinori; Vidova, Veronika et al. (2014) Reprint of: A rapid increase in macrophage-derived versican and hyaluronan in infectious lung disease. Matrix Biol 35:162-73
Kang, Inkyung; Yoon, Dong Won; Braun, Kathleen R et al. (2014) Expression of versican V3 by arterial smooth muscle cells alters tumor growth factor ? (TGF?)-, epidermal growth factor (EGF)-, and nuclear factor ?B (NF?B)-dependent signaling pathways, creating a microenvironment that resists monocyte adhesion. J Biol Chem 289:15393-404

Showing the most recent 10 out of 30 publications