Nitric oxide synthase (NOS) activation can result in formation of relevent nitrogen oxide diseases, other than nitric oxide radicals. One of these is nitrite. Additionally, covalent cysteine modifications form Snitrosothiol bonds. When this cysteine modification signals a change in protein function, it is often termed Snitrosylation. These reactions are increasingly recognized to represent metabolically regulated cell signaling processes. Disorders of airway epithelial S-nitrosylation signaling have been observed in a range of diseases, including asthma and cystic fibrosis (CF). However, the formation and location of S-nitrosothiol modified proteins is poorly understood in airway epithelial cell cultures in general, and has not been studied in primary, pseudostratified columnar airway epithelium. In order to begin to understand NOS-dependent S-nitrosothiol formation in the airways as it relates to disease, we will test the three hypotheses that 1) specific proteins in normal human airway epithelial cells are S-nitrosylated by NOS (Aim 1);2) protein S-nitrosylation occurs in specific subcellular locations in human airway epithelial cells (Aim 2);and 3) S-nitrosylation signaling is disordered in the human CF airway epithelium (Aim 3). We chose to study S-nitrosylation by the inducible and endothelial NOS (iNOS and eNOS) isoforms because each is expressed and active in normal human airway epithelial cells;and because decreased INOS expression in the CF airway epithelium may have important disease implications. Hsp70/Hsp90 organizing protein was chosen to study the paradigm of S-nitrosothiol signaling downstream from iNOS and eNOS activity because 1) it is S-nitrosylated at baseline;2) its S-nitrosylation increases with S-nitrosoglutathione treatment;and 3) its S-nitrosylation appears to be important to airway epithelial cell biology in general, and to the pathobiology and treatment of CF in particular. We have chosen to perform our studies primarily in human airway pseudostratified columnar epithelial cultures because these most closely to recapitulate the human airway in vivo. We will do additional in vivo studies in a mouse model. This project will make extensive use of interactions with investigators on the other projects in this program, and each aim will make use of one or more cores in the program. At the conclusion of this project, we anticipate that we will have 1) a functional model of mechanisms by which NOS activation leads to Snitrosylation of specific proteins in specific cellular locations in human pseudostratified columnar epithelium;and 2) the relevance of disorders of S-nitrosothiol formation to the development of new therapies for CF.

Public Health Relevance

The mechanisms by which NOS signals S-nitrosylation in the human airway epithelium are poorly understood. Our preliminary data suggest that disorders of S-nitrosylation signaling are relevant to the development of new corrector therapies for CF patients. Additionally, this mechanism?and the targets of S-nitrosylation we will study?may be relevant to the underlying pathophysiology not only of CF, but of other pulmonary diseases.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL101871-04
Application #
8607061
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
4
Fiscal Year
2013
Total Cost
$378,985
Indirect Cost
$109,777
Name
Case Western Reserve University
Department
Type
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Gaston, Benjamin; May, Walter J; Sullivan, Spencer et al. (2014) Essential role of hemoglobin beta-93-cysteine in posthypoxia facilitation of breathing in conscious mice. J Appl Physiol (1985) 116:1290-9
Davisson, Robin L; Bates, James N; Johnson, Alan Kim et al. (2014) Effects of intracerebroventricular injections of 5-HT on systemic vascular resistances of conscious rats. Microvasc Res 95:116-23
Zaman, Khalequz; Bennett, Deric; Fraser-Butler, Maya et al. (2014) S-Nitrosothiols increases cystic fibrosis transmembrane regulator expression and maturation in the cell surface. Biochem Biophys Res Commun 443:1257-62
Getsy, Paulina M; Davis, Jesse; Coffee, Gregory A et al. (2014) Enhanced non-eupneic breathing following hypoxic, hypercapnic or hypoxic-hypercapnic gas challenges in conscious mice. Respir Physiol Neurobiol 204:147-59
Mendoza, James P; Passafaro, Rachael J; Baby, Santhosh M et al. (2014) Role of nitric oxide-containing factors in the ventilatory and cardiovascular responses elicited by hypoxic challenge in isoflurane-anesthetized rats. J Appl Physiol (1985) 116:1371-81
Palmer, Lisa A; May, Walter J; deRonde, Kimberly et al. (2013) Ventilatory responses during and following exposure to a hypoxic challenge in conscious mice deficient or null in S-nitrosoglutathione reductase. Respir Physiol Neurobiol 185:571-81
Sun, Yuansheng; Rombola, Christina; Jyothikumar, Vinod et al. (2013) Forster resonance energy transfer microscopy and spectroscopy for localizing protein-protein interactions in living cells. Cytometry A 83:780-93
Palmer, Lisa A; May, Walter J; deRonde, Kimberly et al. (2013) Hypoxia-induced ventilatory responses in conscious mice: gender differences in ventilatory roll-off and facilitation. Respir Physiol Neurobiol 185:497-505
Jyothikumar, Vinod; Sun, Yuansheng; Periasamy, Ammasi (2013) Investigation of tryptophan-NADH interactions in live human cells using three-photon fluorescence lifetime imaging and Forster resonance energy transfer microscopy. J Biomed Opt 18:060501
Marozkina, Nadzeya V; Wei, Christina; Yemen, Sean et al. (2012) S-nitrosoglutathione reductase in human lung cancer. Am J Respir Cell Mol Biol 46:63-70

Showing the most recent 10 out of 12 publications