An important function of the endothelium lining the inner surface of blood vessels is to provide a selective barrier between blood and the surrounding tissues. During the development of acute lung injury (ALI) the endothelial barrier is weakened, leading to increased permeability. It is well known that the family of small ras homology (Rho) GTPases (RhoA, Rad, Cdc42) play a crucial role in the maintenance of endothelial barrier properties. The two best-characterized members of the Rho GTPases: Rho A and Rad, appear to regulate endothelial barrier function in an antagonistic manner. Thus, the activation of Rho A impairs barrier function whereas Rad appears to support barrier integrity. In addition, our recent studies have shown that during the development of ALI in the mouse lung the activities of RhoA and Rad are regulated in an opposing manner such that RhoA activity is increased and Rad activity is attenuated. Together these changes would favor barrier disruption. However, the mechanism by which this opposing regulation occurs unresolved and is the major focus of this project. We will evaluate the mechanisms by which uncoupled eNOS leads to modulation of RhoA/Rad balance through nitration-mediated modifications. We will also determine if preventing RhoA and Rad nitration is barrier protective in vitro and reduces lung injury in both G'and G^-mouse models of ALI, in vivo. It is anticipated that this Project using state-of-the-art cellular, molecular, biochemical, and physiological approaches that will not only increase our understanding of the mechanisms by which RhoA and Rad are regulated during both G(-)- and G(+) -induced ALI but will facilitate the development of new strategies and targets for the treatment of a disease that has not seen a significant drop in mortality in 40 years.

Public Health Relevance

; The overall goal of this Project is to develop a better understanding of the mechanisms by which protein nitration alters RhoA and Rad activity in acute lung injury (ALI). Emphasis is placed on understanding both novel mechanisms and on developing novel reagents to restore EC barrier function during ALI.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL101902-02
Application #
8376415
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
2
Fiscal Year
2012
Total Cost
$364,603
Indirect Cost
$121,535
Name
Georgia Regents University
Department
Type
DUNS #
966668691
City
Augusta
State
GA
Country
United States
Zip Code
30912
Barabutis, Nektarios; Khangoora, Vikramjit; Marik, Paul E et al. (2017) Hydrocortisone and Ascorbic Acid Synergistically Prevent and Repair Lipopolysaccharide-Induced Pulmonary Endothelial Barrier Dysfunction. Chest 152:954-962
Song, Shanshan; Ayon, Ramon J; Yamamura, Aya et al. (2017) Capsaicin-induced Ca(2+) signaling is enhanced via upregulated TRPV1 channels in pulmonary artery smooth muscle cells from patients with idiopathic PAH. Am J Physiol Lung Cell Mol Physiol 312:L309-L325
Wang, Ting; Gross, Christine; Desai, Ankit A et al. (2017) Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets. Am J Physiol Lung Cell Mol Physiol 312:L452-L476
Kumar, Sanjiv; Sun, Xutong; Noonepalle, Satish Kumar et al. (2017) Hyper-activation of pp60Src limits nitric oxide signaling by increasing asymmetric dimethylarginine levels during acute lung injury. Free Radic Biol Med 102:217-228
Chen, F; Wang, Y; Rafikov, R et al. (2017) RhoA S-nitrosylation as a regulatory mechanism influencing endothelial barrier function in response to G+-bacterial toxins. Biochem Pharmacol 127:34-45
Bátori, Róbert; Bécsi, Bálint; Nagy, Dénes et al. (2017) Interplay of myosin phosphatase and protein phosphatase-2A in the regulation of endothelial nitric-oxide synthase phosphorylation and nitric oxide production. Sci Rep 7:44698
Fulton, David J R; Barman, Scott A (2016) Clarity on the Isoform-Specific Roles of NADPH Oxidases and NADPH Oxidase-4 in Atherosclerosis. Arterioscler Thromb Vasc Biol 36:579-81
Rafikova, Olga; Rafikov, Ruslan; Kangath, Archana et al. (2016) Redox regulation of epidermal growth factor receptor signaling during the development of pulmonary hypertension. Free Radic Biol Med 95:96-111
Xie, Lishi; Chiang, Eddie T; Wu, Xiaomin et al. (2016) Regulation of Thrombin-Induced Lung Endothelial Cell Barrier Disruption by Protein Kinase C Delta. PLoS One 11:e0158865
Kovacs-Kasa, Anita; Gorshkov, Boris A; Kim, Kyung-Mi et al. (2016) The protective role of MLCP-mediated ERM dephosphorylation in endotoxin-induced lung injury in vitro and in vivo. Sci Rep 6:39018

Showing the most recent 10 out of 86 publications