In this program project, we propose a Personalized Medicine approach to the study of advanced lung disease. We hypothesize that sub-phenotypes of common diseases, including pulmonary arterial hypertension (PAH), have a profound influence on outcome and responsiveness to therapy. The overarching translatlonal goal of this program is to define common mechanistic and therapeutic pathways for PAH in the context of major lung and systemic diseases, such as COPD and HIV. Our proposed three major projects and two cores are designed to integrate and synergize fundamental translatlonal research addressing major current and high impact problems in the PAH and advanced lung disease field. Because translational medicine requires a bench-to-bedside-to-bench integrated approach, we developed a full translatlonal continuum from preclinical models in three species, including a novel primate PAH model, screening and clinical drug development programs, human hemodynamic phenomic assessments, genetics, and clinical epidemiological trials focused initially on two major disease targets, COPD and HIV, which represent two prototypic models of the pulmonary hypertension sub-phenotype. Our three proposed projects and cores all individually and collaboratively align across this translational spectrum, driving an effort to understand fundamental mechanisms of disease, identify small molecule therapeutic agents, develop screening biomarkers for vascular sub-phenotypes of lung disease, and to set the stage for phase II and III clinical trials. Successes in the first five years of this project are expected to develop into phase ll-lll clinical trials and extension to other advanced lung diseases, such as interstitial lung disease and obstructive sleep apnea, in years 6 to 10. Project 1: Pulmonary hypertension in COPD: Genetic and Environmental Determinants Project 2: ROS signaling and NOS uncoupling in pulmonary vascular disease Project 3: Pulmonary vascular-targeted NO therapeutic strategies Core A: Administrative core Core B: Pre-Clinical Models of PAH Core C: Translational Vascular Phenomics, Genomics and Epidemiology Core

Public Health Relevance

Pulmonary vascular disease is a relatively understudied, but Important sub-phenotype in COPD, HIV, IPF, and OSA that is associated with excessive morbidity and mortality, and presents unique therapeutic opportunities.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-A (M1))
Program Officer
Moore, Timothy M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Snyder, Nathaniel W; Golin-Bisello, Franca; Gao, Yang et al. (2015) 15-Oxoeicosatetraenoic acid is a 15-hydroxyprostaglandin dehydrogenase-derived electrophilic mediator of inflammatory signaling pathways. Chem Biol Interact 234:144-53
Simon, Marc A; Lacomis, Christopher D; George, M Patricia et al. (2014) Isolated right ventricular dysfunction in patients with human immunodeficiency virus. J Card Fail 20:414-21
Hill, Michael R; Simon, Marc A; Valdez-Jasso, Daniela et al. (2014) Structural and mechanical adaptations of right ventricle free wall myocardium to pressure overload. Ann Biomed Eng 42:2451-65
Lai, Yen-Chun; Potoka, Karin C; Champion, Hunter C et al. (2014) Pulmonary arterial hypertension: the clinical syndrome. Circ Res 115:115-30
Griffin, Paula J; Sebastiani, Paola; Edward, Heather et al. (2014) The genetics of hemoglobin A2 regulation in sickle cell anemia. Am J Hematol 89:1019-23
Frazziano, Giovanna; Al Ghouleh, Imad; Baust, Jeff et al. (2014) Nox-derived ROS are acutely activated in pressure overload pulmonary hypertension: indications for a seminal role for mitochondrial Nox4. Am J Physiol Heart Circ Physiol 306:H197-205
Klinke, Anna; Möller, Annika; Pekarova, Michaela et al. (2014) Protective effects of 10-nitro-oleic acid in a hypoxia-induced murine model of pulmonary hypertension. Am J Respir Cell Mol Biol 51:155-62
Sharifi-Sanjani, Maryam; Shoushtari, Ali Hakim; Quiroz, Marisol et al. (2014) Cardiac CD47 drives left ventricular heart failure through Ca2+-CaMKII-regulated induction of HDAC3. J Am Heart Assoc 3:e000670
Fazzari, Marco; Trostchansky, Andrés; Schopfer, Francisco J et al. (2014) Olives and olive oil are sources of electrophilic fatty acid nitroalkenes. PLoS One 9:e84884
Zemke, Anna C; Shiva, Sruti; Burns, Jane L et al. (2014) Nitrite modulates bacterial antibiotic susceptibility and biofilm formation in association with airway epithelial cells. Free Radic Biol Med 77:307-16

Showing the most recent 10 out of 47 publications