The Cells, Vectors, and Protein Expression Core provides advice and support to members ofthe PPG. The Core maintains several suites of vectors used by PPG members for transient, stable and BacMam expression systems in mammalian cells. These include special leader sequences, tag sequences, ligation independent cloning sites, and selectable markers. The Core also supports two types of expression systems for insect cells. The Core maintains cell lines for protein expression, including those with more homogenous glycoforms. It has expertise on growing and cloning hybridoma cell lines. It distributes these materials and provides advice on their use. It advises on methods of protein production, and has facilities for large scale growth of cells for production of recombinant proteins and antibodies. More specifically, the Core provides culture supernatants containing integrin headpiece fragments, protein ligands, and antibodies for Projects 1 and 2, and ICAM-1 D3 and Del-1 fragments for Project 3. It provides baculovirus-infected cells containing FAK and Ser fragments for Project 6. The core will explore production of materials using Pichia for Project 5..

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL103526-04
Application #
8638063
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
4
Fiscal Year
2013
Total Cost
$222,409
Indirect Cost
$92,845
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Lin, Fu-Yang; Zhu, Jianghai; Eng, Edward T et al. (2016) β-Subunit Binding Is Sufficient for Ligands to Open the Integrin αIIbβ3 Headpiece. J Biol Chem 291:4537-46
Dev, Jyoti; Park, Donghyun; Fu, Qingshan et al. (2016) Structural basis for membrane anchoring of HIV-1 envelope spike. Science 353:172-5
Fu, Qingshan; Fu, Tian-Min; Cruz, Anthony C et al. (2016) Structural Basis and Functional Role of Intramembrane Trimerization of the Fas/CD95 Death Receptor. Mol Cell 61:602-13
Chou, James J; Wang, Jia-huai (2015) Transmembrane signaling: A multiplex problem with converging solutions. Prog Biophys Mol Biol 118:87-8
Finci, L; Zhang, Y; Meijers, R et al. (2015) Signaling mechanism of the netrin-1 receptor DCC in axon guidance. Prog Biophys Mol Biol 118:153-60
Zhu, Jianghai; Zhu, Jieqing; Bougie, Daniel W et al. (2015) Structural basis for quinine-dependent antibody binding to platelet integrin αIIbβ3. Blood 126:2138-45
Chen, Xinping; Zhao, Chunyue; Li, Xiaolong et al. (2015) Terazosin activates Pgk1 and Hsp90 to promote stress resistance. Nat Chem Biol 11:19-25
Xia, Wei; Springer, Timothy A (2014) Metal ion and ligand binding of integrin α5β1. Proc Natl Acad Sci U S A 111:17863-8
Blenner, Mark A; Dong, Xianchi; Springer, Timothy A (2014) Structural basis of regulation of von Willebrand factor binding to glycoprotein Ib. J Biol Chem 289:5565-79
OuYang, Bo; Chou, James J (2014) The minimalist architectures of viroporins and their therapeutic implications. Biochim Biophys Acta 1838:1058-67

Showing the most recent 10 out of 25 publications