Activating immune receptors consist of multiple single-pass membrane proteins that assemble on the cell surface through specific interactions between their transmembrane domains. These subunits serve separate roles, either as receptor modules that bind extracellular ligands or as signaling modules that are phosphorylated upon receptor-ligand recognition. The majority of the receptor complexes exhibit a common molecular architecture in which two acidic residues from the transmembrane domain of a signaling dimer couple to one basic residue from the transmembrane domain of a receptor subunit through non-covalent protein-protein interactions within the lipid bilayer. These interactions result in what is known as the intramembrane triad. For many of these receptors, a great deal of structural and biochemical information on receptor-ligand interactions is available, but structural details of the membrane-embedded domain, through which the extracellular signal is transmitted to intracellular domains, remain absent. The goal of this research proposal is to obtain a complete view of a trimeric complex formed by the receptor and signaling modules at atomic resolution. More specifically, we will determine by Nuclear Magnetic Resonance Spectroscopy the structure of the intramembrane triad of a natural killer (NK) cell immune receptor, consisting of the transmembrane domains of the dimeric DAP12 signaling module and the NKG2C receptor chain. We will also characterize the structure of another intramembrane triad, formed by the zeta zeta signaling dimer and NKp46 receptor. High resolution structures of the above two triads, which involve two different classes of signaling modules, will represent essentially all known activating immunoreceptors involving the zeta, Fcy, DAP10, and DAP12 signaling subunits. Since the contact points between the receptor module and the signaling module are all within the transmembrane domains, understanding the structural basis of their assembly has profound consequences for how we envision signals to be communicated across the cellular membrane. Knowledge of the mechanism of assembly would allow us to design new immunosuppressants for medical applications.

Public Health Relevance

This project will increase our understanding of the mechanisms and structure of the immune and blood clotting systems, allowing greater and more exacting immunosuppressants to be used against disease.

Agency
National Institute of Health (NIH)
Type
Research Program Projects (P01)
Project #
5P01HL103526-05
Application #
8695449
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Children's Hospital Boston
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02115
Springer, Timothy A (2014) von Willebrand factor, Jedi knight of the bloodstream. Blood 124:1412-25
Liu, Ying; Zhang, Yan; Wang, Jia-Huai (2014) Crystal structure of human Ankyrin G death domain. Proteins 82:3476-82
Blenner, Mark A; Dong, Xianchi; Springer, Timothy A (2014) Structural basis of regulation of von Willebrand factor binding to glycoprotein Ib. J Biol Chem 289:5565-79
OuYang, Bo; Chou, James J (2014) The minimalist architectures of viroporins and their therapeutic implications. Biochim Biophys Acta 1838:1058-67
Yu, Yamei; Schurpf, Thomas; Springer, Timothy A (2013) How natalizumab binds and antagonizes *4 integrins. J Biol Chem 288:32314-25
Yu, Yamei; Zhu, Jianghai; Huang, Po-Ssu et al. (2013) Domain 1 of mucosal addressin cell adhesion molecule has an I1-set fold and a flexible integrin-binding loop. J Biol Chem 288:6284-94
Zhu, Jieqing; Zhu, Jianghai; Springer, Timothy A (2013) Complete integrin headpiece opening in eight steps. J Cell Biol 201:1053-68
Wang, Rui; Zhu, Jianghai; Dong, Xianchi et al. (2012) GARP regulates the bioavailability and activation of TGFýý. Mol Biol Cell 23:1129-39
Eng, Edward T; Smagghe, Benoit J; Walz, Thomas et al. (2011) Intact alphaIIbbeta3 integrin is extended after activation as measured by solution X-ray scattering and electron microscopy. J Biol Chem 286:35218-26