The completion of sequencing the human genome in 2001 marked a transition in biomedical research. However, the most transformative aspect was not the completion of the genome sequence itself, or the catalog of genes that it produced. Rather, it was the technologies that were spawned by the genome project, including DNA microarrays, proteomics, metabolomics, and more recently. Next Generation DNA sequencing methods and high-throughput epigenetics platforms, which have transformed our approach to fundamental questions in basic, translational, and clinical research. Rather than looking at a single gene at a time, these technologies have given us the ability to explore the epigenetic marks and gene expression patterns of all of the transcripts in the genome and the proteins they encode, to survey the spectrum of variation in populations, or to look at genome-wide patterns of epigenetic variation, and to use these to search for patterns that correlate with disease. With the maturation of these technologies, the challenge is no longer generating the data, but rather, effectively collecting, managing, analyzing, and interpreting it. The goal of the Systems Biology, Bioinformatics, and Biostatistics Core is to provide a collaborative structure in which experienced statisticians and bioinformatics scientists will work together to support the various PPG Projects to develop testable hypotheses about genes associated with COPD and their functional roles in COPD pathogenesis. Many of these statisticians and bioinformatics scientists in Core A are included as co-investigators in the Projects, and they will work closely with the highly talented clinical, laboratory, and population scientists in each Project within this proposed PPG. Core A will serve a dual role, providing support for the collection, management, analysis and interpretation of the SNP, gene expression, and methylation profiling data using """"""""conventional"""""""" methods in bioinformatics while applying new systems-biology-based methods for analysis and interpretation of the data. The rationale behind creating a separate core is to supplement the strong quantitative analytical teams working on each of the various projects with bioinformatics and systems-based modeling expertise and to work to integrate data across projects.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Polverino, Francesca; Laucho-Contreras, Maria E; Petersen, Hans et al. (2017) A Pilot Study Linking Endothelial Injury in Lungs and Kidneys in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 195:1464-1476
Qiu, Weiliang; Guo, Feng; Glass, Kimberly et al. (2017) Differential connectivity of gene regulatory networks distinguishes corticosteroid response in asthma. J Allergy Clin Immunol :
Busch, Robert; Hobbs, Brian D; Zhou, Jin et al. (2017) Genetic Association and Risk Scores in a Chronic Obstructive Pulmonary Disease Meta-analysis of 16,707 Subjects. Am J Respir Cell Mol Biol 57:35-46
Morrow, Jarrett D; Zhou, Xiaobo; Lao, Taotao et al. (2017) Functional interactors of three genome-wide association study genes are differentially expressed in severe chronic obstructive pulmonary disease lung tissue. Sci Rep 7:44232
Yun, Jeong H; Morrow, Jarrett; Owen, Caroline A et al. (2017) Transcriptomic Analysis of Lung Tissue from Cigarette Smoke-Induced Emphysema Murine Models and Human Chronic Obstructive Pulmonary Disease Show Shared and Distinct Pathways. Am J Respir Cell Mol Biol 57:47-58
Sonawane, Abhijeet Rajendra; Platig, John; Fagny, Maud et al. (2017) Understanding Tissue-Specific Gene Regulation. Cell Rep 21:1077-1088
Hayden, Lystra P; Hardin, Megan E; Qiu, Weiliang et al. (2017) Asthma Is a Risk Factor for Respiratory Exacerbations Without Increased Rate of Lung Function Decline: Five-Year Follow-up in Adult Smokers From the COPDGene Study. Chest :
Lopes-Ramos, Camila M; Paulson, Joseph N; Chen, Cho-Yi et al. (2017) Regulatory network changes between cell lines and their tissues of origin. BMC Genomics 18:723
Paulson, Joseph N; Chen, Cho-Yi; Lopes-Ramos, Camila M et al. (2017) Tissue-aware RNA-Seq processing and normalization for heterogeneous and sparse data. BMC Bioinformatics 18:437
Hobbs, Brian D; de Jong, Kim; Lamontagne, Maxime et al. (2017) Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat Genet 49:426-432

Showing the most recent 10 out of 101 publications