1. Core Mission and Aims COPD is a preventable and treatable disease state characterised by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and is associated with an abnormal inflammatory response of the lungs to noxious particles or gases, primarily caused by cigarette smoking. Although COPD affects the lungs, it also produces significant systemic consequences that may have important clinical impact. Thus, the characterization of subjects with COPD must move beyond the very narrow spirometric classification of lung function and include such metrics as anthropometrics, nutritional status, questionnaire-based assessments of both symptoms and disability, and image-based measures of airway and parenchymal disease. Phenotype in this proposal is defined as """"""""the outward manifestations of patients with COPD;anything that is part of their observable structure, function, or behaviour(l)."""""""" The goal of this Clinical Phenotyping Core is to augment the very strong genetic, epidemiologic, and basic science components of this program project by building two cohorts of subjects that have undergone detailed clinical evaluation and quantitative image analysis of the lungs. One of these cohorts (""""""""Lung Tissue Population"""""""") will have surgically explanted lung tissue;the other cohort (""""""""Bronchoscopy Population"""""""") will have bronchoscopically obtained samples of the lung. Based upon their broad expertise, tlie Clinical Phenotyping Core will provide robust measures of disease in these subjects for use in all three of the PPG Projects.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL105339-03
Application #
8501661
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
3
Fiscal Year
2013
Total Cost
$225,693
Indirect Cost
$114,143
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Polverino, Francesca; Laucho-Contreras, Maria E; Petersen, Hans et al. (2017) A Pilot Study Linking Endothelial Injury in Lungs and Kidneys in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 195:1464-1476
Qiu, Weiliang; Guo, Feng; Glass, Kimberly et al. (2017) Differential connectivity of gene regulatory networks distinguishes corticosteroid response in asthma. J Allergy Clin Immunol :
Busch, Robert; Hobbs, Brian D; Zhou, Jin et al. (2017) Genetic Association and Risk Scores in a Chronic Obstructive Pulmonary Disease Meta-analysis of 16,707 Subjects. Am J Respir Cell Mol Biol 57:35-46
Morrow, Jarrett D; Zhou, Xiaobo; Lao, Taotao et al. (2017) Functional interactors of three genome-wide association study genes are differentially expressed in severe chronic obstructive pulmonary disease lung tissue. Sci Rep 7:44232
Yun, Jeong H; Morrow, Jarrett; Owen, Caroline A et al. (2017) Transcriptomic Analysis of Lung Tissue from Cigarette Smoke-Induced Emphysema Murine Models and Human Chronic Obstructive Pulmonary Disease Show Shared and Distinct Pathways. Am J Respir Cell Mol Biol 57:47-58
Sonawane, Abhijeet Rajendra; Platig, John; Fagny, Maud et al. (2017) Understanding Tissue-Specific Gene Regulation. Cell Rep 21:1077-1088
Hayden, Lystra P; Hardin, Megan E; Qiu, Weiliang et al. (2017) Asthma Is a Risk Factor for Respiratory Exacerbations Without Increased Rate of Lung Function Decline: Five-Year Follow-up in Adult Smokers From the COPDGene Study. Chest :
Lopes-Ramos, Camila M; Paulson, Joseph N; Chen, Cho-Yi et al. (2017) Regulatory network changes between cell lines and their tissues of origin. BMC Genomics 18:723
Paulson, Joseph N; Chen, Cho-Yi; Lopes-Ramos, Camila M et al. (2017) Tissue-aware RNA-Seq processing and normalization for heterogeneous and sparse data. BMC Bioinformatics 18:437
Hobbs, Brian D; de Jong, Kim; Lamontagne, Maxime et al. (2017) Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat Genet 49:426-432

Showing the most recent 10 out of 101 publications